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Abstract

This paper proposes a long run variance estimator for conducting inference in time series
regression models that combines the nonparametric approach with a cluster approach. The
basic idea is to divide the time periods into non-overlapping clusters. The long run variance
estimator is constructed by first aggregating within clusters and then kernel smoothing across
clusters or applying the nonparametric series method to the clusters with Type II discrete
cosine transform. We develop an asymptotic theory for test statistics based on these “smoothed
clustered” long run variance estimators. We derive asymptotic results holding the number of
clusters fixed and also treating the number of clusters as increasing with the sample size. For
the kernel smoothing approach, these two asymptotic limits are different whereas for the cosine
series approach, the two limits are the same. When clustering before kernel smoothing, we find
that the “fixed-number-of-clusters” asymptotic approximation works well whether the number
of clusters is small or large. Finite sample simulations suggest that the naive i.i.d. bootstrap
mimics the fixed-number-of-clusters critical values. The simulations also suggest that clustering
before kernel smoothing can reduce over-rejections caused by strong serial correlation although
at a cost of power. When there is a natural way of clustering, clustering can reduce over-rejection
problems and achieve small gains in power for the kernel approach. In contrast, the cosine series
approach does not benefit from clustering.
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1 Introduction

This paper proposes long run variance estimators for conducting inference in time series regression
models that combines the traditional nonparametric kernel smoothing approach (Newey and West
(1987) and Andrews (1991)) or equally weighted cosine (EWC) series approach (Grenander and
Rosenblatt (1953), Phillips (2005), Miiller (2007), Sun (2013) and Lazarus, Lewis, Stock and Watson
(2018)) with a cluster approach (Bester, Conley and Hansen (2011)). The basic idea is to divide
the time periods into non-overlapping clusters with equal number of observations. The long run
variance estimator is constructed by first aggregating within clusters and then kernel smoothing
across clusters or applying nonparametric series method to these aggregated series with Type II
discrete cosine transform. For the kernel smoothing case, the approach is similar in spirit to the
approach proposed by Driscoll and Kraay (1998) in panel settings. Under the assumption that the
time series data is weakly dependent and covariance stationary, we develop an asymptotic theory
for test statistics based on this “smoothed clustered” long run variance estimator. We derive
asymptotic results using two approaches. The first approach treats the number of observations per
cluster as fixed and the number of clusters grows with the sample size. The second approach holds
the number of clusters fixed and the number of observations per cluster increases with the sample
size.

For the kernel smoothing approach, the large number of clusters results are closely linked
to the fixed-b results obtained by Vogelsang (2012) for Driscoll and Kraay (1998) statistics in
panel settings. We show that in the large number of clusters setting robust test statistics follow
the standard fixed-b limits obtained by Kiefer and Vogelsang (2005) assuming that the kernel
bandwidth is treated as a fixed proportion of the sample size. In contrast, in the fixed number of
clusters setting, we obtain a different asymptotic limit that depends on the number of clusters. For
the EWC approach, we show that the large number of clusters and the fixed number of clusters
limits are the same when the number of cosine basis functions is held fixed. One might expect
the relative accuracy of the two asymptotic approximations to depend on the number of clusters
relative to the sample size in the kernel smoothing method. However, we find in a simulation study
that the “fixed number of clusters” asymptotic approximation works well whether the number of
clusters is small or large as does the common limit for the EWC approach. The simulations also
suggest that the naive i.i.d. bootstrap mimics the fixed number of clusters critical values of the
kernel smoothing approach.

The motivation for clustering before kernel smoothing or applying EWC approach is as fol-
lows. Aggregating within clusters works well when serial correlation is relatively strong within
clusters. Under a weak dependence and covariance stationarity assumption, cluster averages will
be asymptotically independent of each other. However, in finite samples, the cluster averages will
be correlated and taking this into account by smoothing can help reduce finite sample over-rejection
problems. In our finite sample simulations clustering before kernel smoothing does reduce over-

rejections caused by strong serial correlation but, not surprisingly, at a cost of power. In contrast



for the EWC approach, clustering does not further reduce over-rejections. In fact clustering may
induce some small additional over-rejections in the presence of strong serial correlation. For cases
where the data has a natural cluster structure, clustering that matches the structure in the data
can help reduce over-rejection problems and deliver small gains in power for the kernel approach.
In contrast, clustering does not improve the performance of the EWC approach.

The rest of the paper is organized as follows. In the next section the model is given and it lays
out the inference problem with long run variance estimators and the relevant test statistics. Section
3 provides asymptotic results for test statistics based on the smoothed clustered long run variance
estimators. Section 4 explores the finite sample properties of the test statistics in a simple location
model. For the kernel smoothing approach, we use both asymptotic and bootstrap critical values.
Section 5 discusses some data dependent bandwidth approaches focusing on mean square error
(MSE) optimal bandwidths (Andrews (1991)) and the test-optimal bandwidths (Sun, Phillips and
Jin (2008)). Section 6 concludes. Key proofs are given in an appendix. Theory for the case where
the number of clusters does not evenly divide the sample is provided in Supplemental Appendix A
along with derivations for the data dependent bandwidths. Tables of asymptotic critical values for

kernel tests for the fixed number of clusters case are given in Supplemental Appendix B.

2 Clustered Smoothed Standard Errors and Test Statistics
Consider the time series regression model,
Yi :$;ﬁ+utvt: 17"'7Ta

where [ is a (k x 1) vector of regression parameters, z; is a (k X 1) vector of regressors, and w; is
a mean zero error process and T is the sample size. The ordinary least squares (OLS) estimator of
B is
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Suppose we divide the time series into G contiguous, non-overlapping clusters of equal size n. so

that T = neG.! The OLS estimator can be rewritten using cluster notation as
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Conceptually, this way of rewriting B can be viewed as the outcome of rearranging the data into

G time periods with ng ”cross-section” units per time period resulting in an artificial panel data

!Cases where G does not evenly divide T is easily handled but notation is more tedious. See Supplemental
Appendix A.



structure. From this artificial panel perspective, E is the pooled OLS estimator of 5. Plugging in

for y; and centering around S gives

1
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with v; = z;u;. Note that 7, and S;“” are within cluster sums.
The kernel smoothed clustered long run variance estimator of v; is constructed as follows. Let

Uy = 14Uy, Wwhere Uy = y¢ — xgﬁ are the OLS residuals. Define the within cluster sums of 7; as
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Using vy, the autocovariance matrix estimator is computed as

G
fj =G Z %g%/g—j for j > 0.
g=j+1
Let K(x) be a kernel function such that K(x) = K(—x), £(0) = 1, |K(z)| < 1, £(z) be continuous at
z=0,and [ K?*(z) < oco. Let M be the bandwidth parameter. The clustered heteroskedasticity

autocorrelation robust (CHAC) variance estimator of T, is defined as
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Notice that the CHAC estimator gives full weight for observations within clusters, a feature that
the usual nonparametric kernel HAC estimator does not have. Smoothing across clusters accounts

for finite sample serial correlation across clusters and is a generalization of the cluster estimator
~CHAC ~
proposed by Bester et al. (2011). The Bester et al. (2011) estimator is obtained when (2 =Ty,

i.e. when no smoothing is used across clusters. Also note that when G =T and n, = 1, the CHAC
estimator becomes the usual kernel HAC estimator. Therefore, the CHAC estimator nests the
traditional kernel approach and the time series cluster approach.

The second long run variance estimator we consider is the EWC estimator (Miiller (2007))

applied to the clusters and is defined as
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where CEWC denotes ”cluster before using equally weighted cosine” estimator. The CEWC esti-
mator was proposed by Miiller (2007) and is a special case of the orthonormal series estimator of
Sun (2013). It has been recommended in practice in a recent paper by Lazarus et al. (2018).
Suppose we are testing linear hypothesis about 3 of the form Hy : RS = r against Hy : RS # r,
where R is a m X k matrix of known constants with full rank and r is a m x 1 vector of known

constants. Define Wald statistics for [ € {CHAC,CEWC'} as
N PR
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For the case of m = 1, we can define a t-statistic as

Y (RB— r)
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For analysis of data dependent bandwidth approaches, it is useful to note that while 2 is an

~1
estimator of the long-run variance of v, it is easy to verify that n; I is an estimator of the long
run variance of v;. Using Z;}:l ng = Z;‘il zpry and T = n,G, we can rewrite V; in the more

conventional form .
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where O = ng Q.
3 Asymptotic Theory

We obtain asymptotic results for the CHAC and CEWC statistics using two distinct asymptotic
nestings for G and n.. The first approach is to let G increase with the sample size, T', but hold ng
fixed, i.e. large-G, fixed-n, asymptotics. The second approach is to hold G fixed and let ng increase
with T, i.e. fixed-G, large-n, asymptotics. Results for the two approaches are treated separately
as they require slightly different regularity conditions. Throughout, the symbol “=-"denotes weak

convergence of a sequence of stochastic process to a limiting stochastic process.

3.1 Large-G, fixed-ng case

In this section, we assume that as G — oo and ng, is held fixed as T' — oo. By definition, n, = T'/G,
so we are implicitly assuming that G is a fixed proportion of the sample size. Vogelsang (2012)

developed fixed-b results for the Driscoll and Kraay (1998) panel analogues to Wegac and topgac



for the case of large number of time periods and fixed number of cross-section units. Vogelsang
(2012) provided conditions under which the fixed-b limits are equivalent to the standard fixed-b
limits obtained by Kiefer and Vogelsang (2005). Given the natural similarities between Weopac
or tocgac and the panel statistics, it is not surprising that the large-G, fixed-n. limits of Wogac
and tog ac follow the standard fixed-b limits under suitable regularity conditions. The asymptotic
theory in Vogelsang (2012) mainly relies on weak dependence and covariance stationarity in time
dimension. In our model, because we divide the pure time series into non-overlapping clusters, as
long as the original time series satisfies weak dependence and covariance stationarity, the regularity
conditions used by Vogelsang (2012) hold here as well.

For the CEWC statistics, Sun (2013) provides relevant assumptions to obtain results with the
number of cosine terms, B, held constant, i.e. fixed-B limits. The assumptions used by Sun (2013)
are weaker than those required for the fixed-b kernel smoothing tests. This is because the limit of
the CEWC test statistics are based on a multivariate central limit theorem (CLT) which is implied
by the functional central limit theorem (FCLT') required for fixed-b asymptotic theory.

The following assumptions are sufficient to obtain results in the large-G, fixed-n, case.
Assumption A 1. ng is fired and G — 0o as T — oo.

2. Forr e (0,1], G™* Z[T gnGg Dngtl zxy = rQ., where Q. is non-singular.

3. E(v,) = 0 and G~'/? Z[ D% g = AWy (r), where Wy(r) is an k x 1 vector of independent
standard Wiener processes and AL = Q. is the k x k long run variance matriz ( 27 times

the zero frequency spectral density matriz) of 7.

Assumptions A2 and A3 are the usual high level assumptions used to obtain fixed-b asymptotic
results. Note that

[TG gna [rG]nG [nLGT]nC
G /
;t (g;n(ﬂxtxt G Z o t tzl e
where the second equality is obtained by plugging in G = T/n,. If the second moment of z;
satisfies a law of large numbers (LLN) uniformly in r, i.e. 771 21[5”11 zpxy = rQ, then Assumption
A2 is satisfied with Q. = n.Q because (n/T) Z]E(:”{”G)T]"G xpx) is asymptotically equivalent to

(ng/T) Z[Tl] zyry. Assumption A3 states that a FCLT holds for the scaled partial sums of 7j.

g TIn . . :
As with Assumption A2, we can show that nl/ 27-1/2 DS ¢ v is asymptotically equivalent to

ne/ 271/ ZLZI vy and it follows that

where € is the long run variance of v;.
Under primitive assumptions for a FCLT such as v; being a mean zero d-order (for some § > 2)

covariance stationary process that is a-mixing of size —v/(v — 2),? then 7, is also a mean zero

2Phillips and Durlauf (1986) provide sufficient conditions for v, to satisfy a FCLT.



d-order (for some ¢ > 2) covariance stationary process that is a-mixing of the same size because
finite sums (ng < 00) of a-mixing processes are also a-mixing with the same size. See White (2001).
Therefore, if a FCLT holds for the scaled partial sums of vy, then it will hold for the scaled partial
sums of U,. In general, Assumptions A2 and A3 are slightly weaker than assumptions usually used
to obtain fixed-b results and are sufficient for the following theorem. The following theorem gives

the asymptotic behavior of OLS, Weogac, and Weogwe. The proof is given in the Appendix.
Theorem 1 Suppose that Assumption A is satisfied. Then, the following hold as T — oo.

(a) Asymptotic normality of OLS:
-1

G
VG (5-5) - (L3 8] 6, = @ am.
g=1

(b) CHAC result: Let Kj(r,s) = K (%52) — [} K (555) dr — [y K (52) dt + [, [} K (t57) dtdr.
Assume Mg = bG where b € (0,1] is fized. Then,
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In the case of m =1,
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(¢) CEWC result: Let fj(d) i N(0,1;). Assume B is held fized. Then,
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and under Hy,
B-m+1
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where Fy, p—m+1 1s the F distribution with degrees of freedom (m,B —m+1). In the case of
m=1,

Feewe = Weewce = Fin,B—m+1,
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tcewe = 1) =tp,

b ()

where tp is the t-distribution with degrees of freedom B.




3.2 Fixed-G, large-ng case

Now suppose we flip the asymptotic nesting so that G is held fixed as T — oo in which case
ne — 00. In this case, the number of observations per cluster is a fixed proportion of the sample
size. With the number of clusters fixed, the LLN, FCLT and multivariate CLT work within the
clusters rather than across the clusters. If the limit theorems hold for the original time series, this
implies the limit theorems hold within clusters. The following assumptions are sufficient to obtain

results in the fixed-G, large-n. case.

Assumption B 1. G is fixred and ng — o0 as T — oo.

2. Forr e (0,1], T7! ZETZTI} iy = rQ where Q is non-singular.
3. Forr € (0,1], T-1/? ZETZTI] vy = AWg(r), where Q@ = AN is the k X k long run variance matrix
of vy.
Assumptions B2 and B3 state that a LLN applies to 7! ZEI] xpx), uniformly in 7 and a FCLT
applies to the scaled partial sum of v;. The following theorem gives the asymptotic behavior of

OLS, Wemac, and Weogpwe and the proof is given in the Appendix.
Theorem 2 Under Assumption B, the following hold as T — oo.

(a) Asymptotic normality of OLS:
-1

G G
VI(B-8) = [z 28] 7235 = @ am).
g=1

g=1

(b) CHAC result: Assume Mg = bG where b € (0,1] is fized. Then

1 ~CHAC
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Ng
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with dWi(r) = dWy(r) — drWi(1), and
WCHAC = Wm(l)/ [Pm(Gv b)]il Wm(l)

In the case of m =1,



(¢) CEWC result: Assume B is held fized. Then,

B B
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The fixed-G, large-n, asymptotic limits of Wogac and togac in Theorem 2(b) are different
from the standard fixed-b asymptotic limits found in Theorem 1(b). The limits depends on both
G and b. Therefore, different asymptotic critical values are needed across b for each value of G.
Table B in the Supplemental Appendix B tabulates asymptotic critical values for tcgac for the
case of the Bartlett kernel for a range of values for G. When G is small, the critical values that
correspond to a given value of b are substantially different from the standard fixed-b critical values
and have fatter tails. This makes sense because using a small value of G is equivalent to using a
large bandwidth. As G increases clustering is reduced and critical values approach the standard
fixed-b critical values.

A simple way to implement the fixed-G, fixed-b critical values is to use the i.i.d. bootstrap
following Gongalves and Vogelsang (2011). Finite sample simulations reported in the next section
indicate that the i.i.d. bootstrap works well in the simple location model for both small and large
values of G.

The limit of the CEWC statistics is the same in the fixed-G, large-n; case as in the large-G,
fixed-n. case. This suggests that the critical values from the F' and t distributions will perform
similarly in practice regardless of whether G is small or large. Our finite sample simulations in the

next section show that this is indeed the case unless serial correlation is very strong.

4 Finite Sample Performance

In this section, we examine the finite sample performance of the test statistics based on the CHAC
and CEWC estimators using a simple location model. The data generating process (DGP) we

consider is

Yy = B+ uy,

Ut = pus—1 + ¢ + i1,



where ug =9 =0, & ~ i.i.d. N(0,1) with p € {-0.5,0,0.5,0.8,0.9}, 0 € {—0.5,0,0.5}. Results are
given for the sample size T' = 60 with number of clusters G € {2,3,4,5,6,10,12,15,60} that are fac-
tors of 60 so that clusters evenly divide the sample. With this DGP, we test the null hypothesis Hy :
B = 0 against the alternative Hy : 8 # 0 at a nominal level of 5%. When computing the CHAC ¢-
statistic, we use the Bartlett, QS and Daniell kernels with M € {1,2,...,9,10,12,15, 30, 40, 50,60}.
When computing the CEWC t¢-statistic, we consider B € {1,...,59}. Here we focus on represen-
tative results for p € {0,0.5,0.8}, 6 € {0} and we exclude the Daniell kernel given the very similar
results to the QS kernel. Tables with a full set of empirical null rejections and size-adjusted power
are available upon request.
In this simple location model, the CHAC and CEWC based t-statistics are computed as

~ 73
= b = \/_?, le {CHAC,CEWCY,
=l ol
\/G (T—lﬂ T—1> 2
where ¢ G
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4.1 Empirical Null Rejections

In this section, we examine empirical null rejection probabilities of the CHAC and CEWC test
statistics. Note that when G = T, it follows that n, = 1 and the CHAC and CEWC estimators
simplify to the usual HAC and EWC variance estimators without clustering. For the CHAC
approach the pure time series clustering approach of Bester et al. (2011) is obtained when M = 1.

We compute empirical null rejection probabilities using 10,000 replications. We reject the
null hypothesis whenever |t;| > t., | = CEWC,CHAC, where t. is a critical value. For the
CEWC approach, regardless of whether G is considered as fixed or G — oo, the critical value is
the 97.5% percentile of the tp distribution (Theorem 1(c) and 2(c)). On the other hand, for the
CHAC approach, the limiting distributions of the test statistic differ depending on whether G is
considered fixed or G — co. When G — oo, the asymptotic critical value is the 97.5% percentile
of the standard fixed-b asymptotic distribution with b = M /G (Theorems 1(b)). For the fixed-G
case the critical value is the 97.5% percentile of the distribution given in Theorem 2(b). These
nonstandard asymptotic critical values are obtained using standard simulation methods. Given

that the asymptotic critical values in the fixed-G case depend on both G and Mg, a convenient



alternative is to use the bootstrap to obtain critical values. We use the naive i.i.d. bootstrap critical
values and the overlapping moving block bootstrap with the block length [ = ng, thereby matching
the block size with the number of observations per cluster. Gongalves and Vogelsang (2011) showed
that the naive moving block bootstrap with block length fixed (including [ = 1) or increasing but
slower than the sample size (1?/T — 0) has the same limiting distribution as the fixed-b asymptotic
distribution for statistics like the CHAC statistics as long as the fixed-b limit is asymptotically
pivotal. It is not obvious whether the bootstrap distribution will mimic the large-G or the fixed-G
limit given that the results of Gongalves and Vogelsang (2011) apply to both asymptotic nestings
for G. Intuitively, we should expect the bootstrap to mimic the fixed-G limit when G is small but
to mimic the large-G limit for large values of G. Because the small-G limit critical values approach
the large-G critical values as G increases, a reasonable conjecture is that the bootstrap will mimic
the small-G critical values. As the simulations results show, this is indeed the case.

Table 1 reports empirical null rejections for topac using the Bartlett kernel for large-G and
fixed-G asymptotic critical values. Similar results were obtained for other kernels and are omitted.
The results are arranged in the table to hold the amount of smoothing, b = Mg /G, the same across
values of G (across rows). The table has two panels because of the way values of b correspond to
the integer values of G. Combining the panels would result in blank table entries making it more
difficult to see patterns clearly.

For the p = 0 case, rejection rates suggest that the fixed-G asymptotic critical values (right
panel) work better, as expected, than the large-G critical values (left panel) when G is small.
Both critical values work well when G is large. For p = 0.5,0.8 there are three distinct patterns.
First, as p approaches 1, over-rejections occur and become more pronounced. This is well known.
Second, for a given value of (G, increasing b tends to reduce over-rejections caused by positive serial
correlation. This is also well known and expected. Third, for a given b, using a small number of
clusters helps to reduce over-rejections. This is a benefit of using time series clustering and the
finding intuitively makes sense. There is no down-weighting across autocovariances within clusters
which helps accommodate stronger serial correlation. The smaller the value of G, the larger the
number of observations per cluster and the greater robustness to serial correlation.

Tables 2-3 report empirical null rejections for topgac for the Bartlett and QS kernels using
bootstrap critical values. The left panels report rejection probabilities using the overlapping n
block bootstrap whereas the right panels report rejections using the 7.i.d bootstrap. The first
obvious pattern is that i.i.d. bootstrap rejections for the Bartlett kernel in Table 2 are nearly
identical to the fixed-G rejections in Table 1 even when G is large. This confirms the conjecture
that the i.i.d. bootstrap mimics the fixed-G asymptotic distribution and is a convenient way to
obtain fixed-G critical values. The performance of the block bootstrap depends on the strength of
the serial correlation and the size of blocks. The middle sized blocks, corresponding to moderate
values of GG, can result in less over-rejections than the i.i.d. bootstrap. However for small values of

G (large block size) we see substantial under-rejections. This is caused by the block length being
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too large relative to the sample size. As long as G is not too small, the block bootstrap with [ = ng
works reasonably well. If we compare rejections across the two kernels, we see that the QS kernel
tends to suffer less from over-rejections than the Bartlett kernel. This is well known in the fixed-b
literature.

Empirical null rejections for topw e are reported in Table 4. Similar to the tcgac tables, the
rejections are reported with the amount of smoothing (B) held fixed in each row. It is important
to keep in mind that 1/B roughly corresponds to b for the tcgac statistics. Therefore, small
(large) values of B are equivalent to large (small) bandwidths. With no serial correlation in the
data (p = 0), rejections are close to zero regardless of the values of B and G. With positive serial
correlation, we see that for a given value of G, increasing B (equivalent to a decrease in b) leads to
over-rejections as expected. For given values of B, rejections are stable and close to 5% even for
p = 0.8 regardless of the value of G. Therefore, clustering does not matter much when B is small.
For large values of B, there are over-rejections that are similar in magnitude to those of tcgac
with the QS kernel when 1/B is matched with b. This makes sense given that the CEW C variance
estimator is closely related to the QS CHAC estimator (see Lazarus et al. (2018)). However, the
impact of GG is different between topwe and togac. Consider the case of B = 3 with p = 0.8.
Increasing G leads to less over-rejections for togw . This is in contrast to togac with both the
Bartlett and QS kernels where, when b = 0.33, increasing G tends to increase over-rejections. This
increase is more pronounced for the Bartlett kernel. While the contrast between tcgac and topwce
with respect to G is difficult to understand intuitively, what is clear from Table 4 is that clustering
either doesn’t have an impact on null rejections for tcgwe or can inflate over-rejections when serial
correlation is strong. There do not appear to be benefits of clustering before smoothing for the
EWC approach.

4.2 Size-Adjusted Power

It is well established in the fixed-b literature that there is a trade-off between size distortions
and power with respect to the amount of smoothing used for the variance estimator. Given that
clustering can reduce over-rejections for a given value of b for tcgac, one would expect there to be
cost in terms of power. This is indeed the case. Tables 5 and 6 report size-adjusted power for the
tomac and topwe statistics. Power is averaged (integrated) across 8 € [0, 5]. We see the expected
relationship between smoothing and power. As the bandwidth increases, power of toa¢ tends to
decrease. Similarly, as B decreases (1/B increases), power of tcgwe decreases. For a given value
of b, clustering by decreasing G tends to reduce the power of the to ¢ statistics. As expected, the
reductions of over-rejections delivered by clustering result in reduced power. In contrast, clustering
has very little impact on power of topwc again confirming there are no benefits of clustering with
EWC approach.

11



4.3 Weekends Missing Example

Our finite sample simulations results suggest that in the simple location model, clustering can
be used to reduce over-rejections problems of toac caused by strong serial correlation but this
reduction comes at the price of reduced power. In contrast, there is no material impact on topwc
from clustering. We now investigate a simple data structure where clustering is natural to see
whether our finite sample results continue to hold. Suppose we have daily data but observations
for the weekends are systematically missing (markets could be closed on the weekends). Here, the
data can naturally be divided into clusters with five observations, or more generally, into clusters
with a number of observations that are evenly divisible by five.

While there are multitudes of ways to generate daily data with missing weekends, we chose a
simple specification. We use the DGP from the previous simulations and generate samples with 84
observations, i.e. twelve seven-day weeks. We then drop every 6* and 7" observation to match a
missing weekends specification giving 7' = 60 observations. Given our AR(1) structure, adjacent
observations within a week have correlation p whereas adjacent end of week and beginning of week
observations have correlation p3. We can think of the data as being composed of 12 weeks with 5
observations per week. Using G = 12 becomes natural and matches the correlation structure of the
data.

Tables 7 and 8 report empirical null rejections for tcgac for the Bartlett and QS kernels
respectively. We no longer hold smoothing constant across values of G. Instead we report results
for values of Mg (not b) in each row. This will permit us to see how lining up the choice of G with
the cluster structure of the data matters. We only report results for p = 0.5 and 0.8. Results for
p = 0 are not interesting in the missing weekend case.

For a given value of Mg, there is a general pattern of over-rejections becoming more severe as
G increases. This intuitively makes sense because larger values of G include more down-weighting
when computing the kernel HAC variance estimator. However, this pattern is not monotonic in G
especially for small values of M. While rejections tend to increase as (G increases, rejections tend
to decrease when G increases from 5 to 6 and from 10 to 12. It is exactly when G = 12 that the
clustering in the variance estimation matches the cluster structure of the data. The case of G =6
has clusters with exactly two weeks of data. These results show that matching the clustering of
tcgac to the cluster structure of the data can reduce over-rejections relative to the clustering that
does not match the data.

Because increasing G for a given value of Mg tends to increase power, one might conjecture
that moving from G = 10 to G = 12 not only reduces size distortions but does so without a cost
in terms of power. This is indeed the case as Table 9 shows. The average size-adjusted power
is generally increasing in G' and specifically increases when G goes from 5 to 6 or from 10 to 12.
Therefore, at least for our simple weekend missing data structure, it is advantageous to match the
variance estimator clustering with the cluster structure of the data in terms of both size distortions

and power.
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Weekends missing results for topw e are given in Tables 10 and 11 for null rejections and size-
adjusted power respectively. Similar to the tcgac statistics, we see reductions in over-rejections
with G going from 5 to 6 and from 10 to 12 especially for the larger values of B in the table. While
null rejections are less distorted with G = 12 relative to G = 10, null rejections with G = 60 (no
clustering) are essentially the same as G = 12. Furthermore, average size-adjusted power for tcpw e
with G = 12 is essentially the same as with G = 60. Again, there is no advantage of clustering for
the EWC approach.

5 Data Dependent Bandwidths for the CHAC Approach

The finite sample simulations suggest that clustering before smoothing can be useful for the CHAC
approach if a researcher wants to reduce size distortion caused by strong serial correlation or if
the time series has a natural cluster structure like the missing weekends case. In this section we
briefly examine the extent to which existing data dependent bandwidths methods can be used to
choose the bandwidth and/or cluster size for the CHAC approach. The results we sketch here
are appropriate for the large-G, fixed-n case. It is not obvious how to extend existing results in
the literature to the fixed-G, large-n. case and we leave such theoretical developments to future
research.

We consider both the MSE-optimal (Andrews (1991)) and test-optimal (Sun et al. (2008),
Sun (2014)) bandwidth approaches. For simplicity of exposition, we continue to focus on the
simple location model, i.e. the case where x; only contains an intercept regressor. We provide
calculations for the widely used autoregressive lag one (AR(1)) plug-in method. Derivations are

provided in Supplemental Appendix A.

Recall that in the large-G case, 6CHAC is an estimator of 2., the long run variance of 7,. When
the time series is covariance stationary, ng 1§CHAC is an estimator of €2, the long run variance of
vy and Q. = n ). We apply existing bandwidth results to ng 1§CHAC.

According to the AR(1) plug-in approach, v; is approximated by the AR(1) process vy =
pvi—1 + €¢. It then follows from Amemiya and Wu (1972) that v, is an ARM A(1,1) process. We
show in Supplemental Appendix A that

Q) = ), (1)

@ _ o2+ - p)
L e ®

Here, QY = S il and Q@ = 37%°  |4]9T;, where T'.; and T; are the autocovariance

j:—oo J=—00
functions of v, and v; respectively.
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5.1 MSE-optimal Bandwidth

Following Andrews (1991):

~CHAC ~CHAC @\ ?
MSE (iQ ) = iQMSE (Q ) ~ L (kqﬂc ) —1-26292% ,

~ 5 c
N n2 n2 |\ Mg G

1-K(x)

EE

where Mg is the bandwidth and ¢ € [0, 00) is the largest integer such that k; = limg,_

and c; = [ K(z)?dz. Replacing Q. with n.Q, plugging in for Q' using (1) and (2), and using

< 00,

T = n:G gives
poM )2 —102
MSE (iﬁCHAC> _ (ngMGv) + 21T~ 102n M i=1
" (L9 ‘1+P”G><1—p>)2 42T 120 Mg q=2.

neMg (1-p"6)(1+p)

In the case of ¢ = 1 (Bartlett kernel), the MSE formula depends on n, and Mg only through the
product noMq. Therefore, minimization of the MSE can only determine the product but not ng
and Mg individually. Notice also in the ¢ = 1 case that if we replace n Mg with M7 we obtain
the MSE formula for the case of no clustering. Therefore, if we let M7 denote the MSE-optimal
bandwidth for the case of no clustering, then it immediately follows for a given cluster size, ng,
that nq M5 = M7 or ME = M7 /ng.

A practical recommendation for the Bartlett kernel can be made from this result. First, com-
pute M7, the MSE-optimal bandwidth without clustering. Once the cluster size has been chosen,
perhaps based on the cluster structure of the data, use the bandwidth M¢ = M7 /ng for the CHAC
estimator.

The case of ¢ = 2 (QS kernel) is more complicated because of the (14p")(1=p) ; term in

Mg(1—p"G)(1+p
the MSE formula. We show in Supplemental Appendix A that, for the empirically relevant case

of positive autocorrelation (p > 0), the MSE minimization has a corner solution with n} =1 in
which case no clustering is used and the usual bandwidth formula for M is obtained. Should an
empirical researcher decide to use a cluster size different from 1, the MSE-optimal bandwidth can

be computed as

Mg = My

<<1+ﬁm><l—ﬁ>>2 ! ]/

(1-p)1+p)) ndd

where p is the same estimated value of p used to calculate M.

5.2 Test-optimal Bandwidth

Following Sun et al. (2008) (SPJ), the test-optimal bandwidth minimizes the SPJ objective function,
which is a weighted average of the approximate type I and the type II errors of the CHAC test
statistic. Without going into details, the SPJ objective function shares the same essential features

as the MSE objective function with respect to ne and Mg. In the ¢ = 1 case, the SPJ objective
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function depends on n, and Mg only through the product ncMg. In the ¢ = 2 case, n); =1 is
obtained as a corner solution. Should an empirical researcher decide to use a given cluster size, ng,

the test-optimal bandwidths are given by

M7 /ng g=1
M*< 1 (1+5"G)(1—ﬁ)>1/3

T\ ne? 1=50)(159)

Mg =

where M7 is the test-optimal bandwidth without clustering and p is the same estimated value of p

used to calculate M7. For the derivation, see Supplemental Appendix A.

6 Conclusion

This paper proposes a long run variance estimator for conducting inference in time series regres-
sion models that combines the nonparametric approach with a cluster approach. The basic idea
is to divide the time periods into non-overlapping clusters. The long run variance estimator is
constructed by first aggregating within clusters and then kernel smoothing across clusters or ap-
plying the nonparametric series method to the clusters with Type II discrete cosine transform.
We develop an asymptotic theory for test statistics based on these “smoothed clustered” long run
variance estimators. We derive asymptotic results holding the number of clusters fixed and also
treating the clusters as increasing with the sample size. For the kernel approach, these two asymp-
totic limits are different and nonstandard whereas for the cosine series approach, the two limits
are the same and have standard t or F' distributions. When clustering before kernel smoothing, we
find that the “fixed-number-of-clusters” asymptotic approximation works well whether the number
of clusters is small or large. The moving blocks bootstrap (including the naive i.i.d. bootstrap) is
a convenient way to obtain critical values that are asymptotically equivalent to critical values from
the “fixed-number-of-clusters” limiting distribution.

Finite sample simulations for the simple location model suggest that clustering before kernel
smoothing can reduce over-rejections caused by strong serial correlation although at a cost of power
as typical. In contrast, clustering before using the cosine series approach does not tend to reduce
over-rejection problems. When there is a natural way of clustering, such as weekly data with
missing weekends, then clustering can reduce over-rejection problems with some potential gains in
power for the kernel approach. In contrast, there are no gains to clustering for the cosine series
approach.

For the kernel approach we analyze data dependent bandwidth approaches configured for the
AR(1) plug-in approach. For the Bartlett kernel, both MSE-optimal and test-optimal approaches
only determine the product, ncM¢, and not the cluster size and kernel bandwidth separately. For
kernels in the same class as the QS kernels, both bandwidth approaches give n, = 1 in which case
no clustering is used. An empirical researcher using the Bartlett kernel should use clustering if
either there is a desire to reduce over-rejections caused by strong serial correlation or there is a

natural cluster structure to the data. For the QS kernel clustering has no distinct advantage except
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when the data has a natural cluster structure. Once the number of clusters has been chosen, data
dependent bandwidths can be computed as a simple functions of the non-clustered data dependent
bandwidths.
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Table 1: CHAC: Empirical Null Rejections Using Asymptotic Critical Values, Bartlett

G — Fixed G
p % values of G values of G
6 12 30 60 6 12 30 60
0 0.17 0.071 0.056 0.049 0.048 0.049 0.050 0.049 0.049
0.50 0.072 0.056 0.051 0.050 0.048 0.050 0.051 0.051
0.83 0.067 0.052 0.046 0.048 0.050 0.050 0.048 0.050
1.00 0.067 0.052 0.048 0.047 0.050 0.049 0.048 0.048
0.5 0.17 0.092 0.074 0.075 0.075 0.062 0.069 0.075 0.077
0.50 0.083 0.070 0.070 0.069 0.058 0.065 0.068 0.069
0.83 0.079 0.067 0.067 0.067 0.057 0.065 0.069 0.070
1.00 0.080 0.068 0.068 0.068 0.057 0.065 0.069 0.070
0.8 0.17 0.158 0.151 0.153 0.153 0.113 0.141 0.153 0.155
0.50 0.122 0.115 0.115 0.115 0.089 0.107 0.114 0.115
0.83 0.118 0.113 0.112 0.112 0.094 0.109 0.114 0.116
1.00 0.119 0.114 0.114 0.114 0.094 0.110 0.115 0.116

CHAC: Empirical Null Rejections Using Asymptotic Critical Values, Bartlett (cont’d)

G — Fixed G
p % values of G values of G
3 6 12 15 30 60 3 6 12 15 30 60

0 033 0.135 0.071 0.055 0.052 0.048 0.048 0.050 0.049 0.050 0.049 0.047 0.048
0.67 0.130 0.069 0.053 0.051 0.049 0.049 0.048 0.049 0.050 0.048 0.049 0.051
1.00 0.132 0.067 0.052 0.049 0.048 0.047 0.048 0.050 0.049 0.048 0.048 0.048
0.5 0.33 0.145 0.086 0.069 0.070 0.068 0.068 0.054 0.060 0.064 0.066 0.068 0.068
0.67 0.141 0.083 0.068 0.068 0.066 0.066 0.052 0.058 0.064 0.066 0.067 0.068
1.00 0.142 0.080 0.068 0.068 0.068 0.068 0.052 0.057 0.065 0.067 0.069 0.070
0.8 033 0.171 0.125 0.120 0.120 0.119 0.119 0.064 0.093 0.113 0.114 0.118 0.120
0.67 0.163 0.119 0.113 0.113 0.114 0.113 0.063 0.091 0.108 0.110 0.114 0.116
1.00 0.166 0.119 0.114 0.114 0.114 0.114 0.063 0.094 0.110 0.112 0.115 0.116

Note: Table 1 reports empirical null rejection rates for the Bartlett kernel CHAC approach based on simulated

asymptotic critical values with b = M¢ /G fixed. The left panel contains rejection rates for G — oo with ne-fixed

case and the right panel contains rejection rates for ng — oo with G-fixed.
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Table 2: CHAC:

G block bootstrap

i.i.d. bootstrap

p % values of G values of G
6 12 30 60 6 12 30 60
0 0.17 0.036 0.043 0.049 0.051 0.049 0.050 0.051 0.051
0.50 0.038 0.043 0.049 0.051 0.049 0.051 0.051 0.051
0.83 0.037 0.043 0.048 0.050 0.048 0.050 0.049 0.050
1.00 0.037 0.044 0.049 0.050 0.048 0.050 0.050 0.050
0.5 0.17 0.044 0.062 0.074 0.079 0.063 0.071 0.077 0.079
0.50 0.042 0.059 0.068 0.070 0.059 0.065 0.069 0.070
0.83 0.041 0.057 0.068 0.070 0.060 0.065 0.070 0.070
1.00 0.041 0.057 0.068 0.070 0.060 0.064 0.069 0.070
0.8 0.17 0.075 0.125 0.153 0.158 0.116 0.144 0.156 0.158
0.50 0.065 0.096 0.113 0.117 0.090 0.109 0.116 0.117
0.83 0.066 0.097 0.112 0.116 0.094 0.108 0.115 0.116
1.00 0.066 0.099 0.113 0.116 0.094 0.110 0.115 0.116

Empirical Null Rejections Using Bootstrap Critical Values, Bartlett

CHAC: Empirical Null Rejections Using Bootstrap Critical Values, Bartlett (cont’d)

G block bootstrap

i.i.d. bootstrap

p % values of G values of G
3 6 12 15 30 60 3 6 12 15 30 60
0 0.33 0.031 0.036 0.045 0.044 0.048 0.051 0.052 0.049 0.050 0.051 0.050 0.051
0.67 0.032 0.037 0.043 0.045 0.047 0.050 0.049 0.049 0.050 0.049 0.050 0.050
1.00 0.032 0.037 0.044 0.045 0.049 0.050 0.049 0.048 0.050 0.050 0.050 0.050
0.5 0.33 0.032 0.043 0.058 0.061 0.069 0.070 0.055 0.060 0.066 0.067 0.070 0.070
0.67 0.030 0.043 0.059 0.062 0.066 0.068 0.054 0.060 0.063 0.066 0.068 0.068
1.00 0.030 0.041 0.057 0.062 0.068 0.070 0.054 0.060 0.064 0.067 0.069 0.070
0.8 0.33 0.030 0.065 0.102 0.107 0.118 0.121 0.065 0.094 0.114 0.115 0.120 0.121
0.67 0.030 0.067 0.096 0.104 0.112 0.116 0.064 0.092 0.108 0.111 0.115 0.116
1.00 0.030 0.066 0.099 0.104 0.113 0.116 0.064 0.094 0.110 0.111 0.115 0.116

Note: Table 2 reports empirical null rejection rates for the Bartlett kernel CHAC approach based on the overlapping

ne block bootstrap (left panel) and the i.i.d. bootstrap (right panel) critical values. The nominal level is 5% and

T = 60.
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Table 3: CHAC: Empirical Null Rejections Using Bootstrap Critical Value, QS

G block bootstrap i.i.d. bootstrap
p % values of G values of G
6 12 30 60 6 12 30 60

0 017 0.036 0.045 0.050 0.052 0.050 0.050 0.052 0.052
0.50 0.044 0.046 0.052 0.051 0.053 0.050 0.052 0.051
0.83 0.045 0.046 0.050 0.050 0.051 0.049 0.049 0.050
1.00 0.045 0.046 0.048 0.049 0.051 0.049 0.048 0.049
0.5 0.17 0.043 0.057 0.058 0.059 0.063 0.062 0.060 0.059
0.50 0.046 0.052 0.055 0.055 0.056 0.055 0.056 0.055
0.83 0.046 0.051 0.052 0.052 0.055 0.053 0.052 0.052
1.00 0.046 0.051 0.053 0.053 0.054 0.053 0.052 0.053
0.8 0.17 0.073 0.097 0.103 0.104 0.112 0.113 0.105 0.104
0.50 0.054 0.062 0.065 0.067 0.069 0.066 0.066 0.067
0.83 0.061 0.057 0.061 0.062 0.064 0.061 0.062 0.062
1.00 0.052 0.059 0.060 0.062 0.063 0.061 0.061 0.062

CHAC: Empirical Null Rejections Using Bootstrap Critical Values, QS (cont’d)

G block bootstrap i.i.d. bootstrap
p % values of G values of G
3 6 12 15 30 60 3 6 12 15 30 60

0 033 0.031 0.040 0.045 0.049 0.051 0.051 0.052 0.051 0.051 0.052 0.053 0.051
0.67 0.030 0.045 0.046 0.049 0.049 0.050 0.047 0.052 0.050 0.052 0.050 0.050
1.00 0.029 0.045 0.046 0.047 0.048 0.049 0.047 0.051 0.049 0.049 0.048 0.049

0.5 033 0.032 0.043 0.052 0.053 0.0564 0.056 0.055 0.057 0.055 0.057 0.056 0.056
0.67 0.028 0.045 0.051 0.052 0.053 0.053 0.063 0.054 0.0564 0.053 0.052 0.053
1.00 0.027 0.046 0.051 0.051 0.053 0.053 0.050 0.054 0.053 0.054 0.052 0.053

0.8 033 0.029 0.058 0.069 0.070 0.072 0.074 0.064 0.079 0.075 0.075 0.074 0.074
0.67 0.028 0.052 0.058 0.060 0.063 0.062 0.065 0.064 0.062 0.063 0.062 0.062
1.00 0.027 0.052 0.059 0.060 0.060 0.062 0.061 0.063 0.061 0.062 0.061 0.062

Note: Table 3 reports empirical null rejection rates for the QS kernel CHAC approach based on the overlapping
ng block bootstrap (left panel) and the i.i.d. bootstrap (right panel) critical values. The nominal level is 5% and
T = 60.
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Table 4: CEWC: Empirical Null Rejections Using tp Critical Values

©
Sy

values of GG
2 3 4 5 6 10 12 15 20 30 60
0.050 0.049 0.052 0.050 0.053 0.052 0.051 0.053 0.051 0.053 0.053
0.050 0.049 0.048 0.050 0.051 0.050 0.051 0.048 0.050 0.049
0.051 0.051 0.049 0.053 0.050 0.051 0.050 0.050 0.050
0.051 0.052 0.051 0.049 0.049 0.051 0.050 0.050
0.049 0.050 0.049 0.050 0.050 0.048 0.050
0.050 0.051 0.052 0.049 0.051 0.050
0.049 0.051 0.050 0.053 0.052 0.051 0.048 0.051 0.050 0.050 0.050
0.053 0.053 0.052 0.051 0.052 0.052 0.050 0.051 0.051 0.051
0.055 0.058 0.056 0.056 0.054 0.055 0.055 0.054 0.054
0.061 0.061 0.058 0.058 0.056 0.057 0.056 0.055
0.062 0.061 0.060 0.058 0.058 0.057 0.055
0.065 0.064 0.062 0.060 0.060 0.058
0.054 0.055 0.051 0.054 0.051 0.051 0.051 0.052 0.052 0.051 0.051
0.064 0.064 0.063 0.063 0.060 0.059 0.058 0.059 0.058 0.058
0.080 0.078 0.079 0.076 0.074 0.074 0.073 0.073 0.072
0.092 0.096 0.089 0.087 0.087 0.086 0.085 0.085
0.114 0.107 0.103 0.101 0.098 0.097 0.096
0.125 0.121 0.118 0.117 0.114 0.113

0.5

0.8

ST WN O TR WN RO OUER WN -

Note: Table 4 reports empirical null rejection rates for the CEWC approach. The nominal level is 5% and T = 60.
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Table 6: CEWC: Average Size-adjusted Power for 5 € [0, 5]

<
sy

values of G

2 3

4

5

6

10

12

15

20

30

60

0.739 0.745
0.901

0.724
0.902
0.924

0.736
0.903
0.924
0.932

0.719
0.902
0.925
0.932
0.938

0.726
0.901
0.922
0.932
0.937
0.940

0.732
0.901
0.924
0.933
0.937
0.939

0.727
0.901
0.924
0.933
0.937
0.939

0.733
0.902
0.924
0.932
0.937
0.940

0.724
0.901
0.924
0.933
0.938
0.939

0.715
0.903
0.924
0.932
0.937
0.939

0.5 0.529 0.524

0.804

0.525
0.805
0.852

0.507
0.808
0.848
0.866

0.517
0.808
0.853
0.865
0.874

0.521
0.807
0.850
0.866
0.876
0.881

0.536
0.807
0.852
0.866
0.876
0.880

0.522
0.810
0.850
0.867
0.876
0.880

0.523
0.808
0.850
0.865
0.875
0.881

0.521
0.808
0.850
0.865
0.877
0.881

0.526
0.807
0.849
0.865
0.876
0.881

0.8 0.247 0.253

0.546

T W N RO U WN RO O W -

(@)

0.267
0.546
0.641

0.256
0.544
0.636
0.670

0.265
0.549
0.637
0.674
0.695

0.263
0.545
0.638
0.677
0.696
0.710

0.263
0.550
0.640
0.677
0.698
0.711

0.258
0.548
0.639
0.678
0.699
0.714

0.261
0.549
0.639
0.677
0.699
0.714

0.263
0.550
0.640
0.678
0.698
0.715

0.262
0.550
0.640
0.678
0.698
0.714

Note: Table 6 reports average size adjusted power for the CEWC approach. The nominal level is 5% and

T = 60. The alternative hypothesis is 8 € (0, 5].
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Table 9: CHAC: Average Size-adjusted Power for § € [0, 5], Weekends Missing (7" = 60 out of 84)

p M values of G

2 3 4 ) 6 10 12 15 30 60

Barlett Kernel
0.587 0.821 0.868 0.881 0.888 0.899 0.902 0.903 0.907 0.908
0.587 0.811 0.856 0.868 0.879 0.892 0.898 0.900 0.905 0.907
0.811 0.855 0.862 0.871 0.886 0.893 0.896 0.903 0.906
0.855 0.864 0.868 0.883 0.888 0.891 0.900 0.905
0.864 0.870 0.879 0.883 0.887 0.899 0.903
0.870 0.875 0.880 0.883 0.896 0.903
0.875 0.878 0.877 0.887 0.899
0.283 0.598 0.699 0.728 0.743 0.767 0.775 0.777 0.782 0.785
0.283 0.566 0.664 0.697 0.715 0.750 0.760 0.765 0.777 0.783
0.566 0.661 0.677 0.697 0.729 0.743 0.753 0.772 0.779
0.661 0.676 0.690 0.716 0.730 0.736 0.766 0.776
0.676 0.692 0.705 0.721 0.726 0.759 0.774
0.692 0.700 0.714 0.717 0.754 0.773
0.701 0.705 0.701 0.726 0.760

QS Kernel
0.587 0.820 0.867 0.880 0.887 0.898 0.902 0.903 0.906 0.908
0.587 0.791 0.834 0.848 0.865 0.884 0.892 0.897 0.903 0.907
0.762 0.804 0.819 0.838 0.868 0.877 0.887 0.900 0.905
0.774 0.799 0.816 0.851 0.864 0.875 0.896 0.903
0.781 0.798 0.836 0.850 0.864 0.891 0.902
0.786 0.819 0.836 0.853 0.886 0.900
0.780 0.798 0.814 0.863 0.892
0.283 0.595 0.694 0.725 0.742 0.763 0.771 0.774 0.780 0.785
0.283 0.528 0.605 0.652 0.682 0.732 0.747 0.758 0.774 0.781
0.483 0.532 0.581 0.622 0.699 0.716 0.735 0.769 0.777
0.496 0.541 0.565 0.662 0.688 0.710 0.758 0.774
0.508 0.531 0.624 0.656 0.686 0.748 0.773
0.511 0.594 0.628 0.663 0.736 0.769
0.509 0.541 0.572 0.687 0.748

0.5

0.8

= =
O@U’Y%W[\D}—‘OOJCF\%OJ[\DP—\

0.5

0.8

— —
OQQ%WMHOQU»&WMH

Note: Table 9 reports average size adjusted power for the weekends missing case for the Bartlett

and QS kernels CHAC approach. The nominal level is 5%, and the alternative hypothesis is
B € (0,5].
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Table 10: CEWC: Empirical Null Rejections Using ¢5 Critical Values, Weekends Missing (7" = 60 out of 84)

P B values of G
2 3 4 5 6 10 12 15 20 30 60

0.043 0.050 0.052 0.049 0.048 0.048 0.048 0.049 0.049 0.047 0.047
0.052 0.051 0.053 0.050 0.052 0.050 0.050 0.052 0.050 0.050
0.049 0.053 0.051 0.054 0.052 0.052 0.053 0.053 0.053

0.056 0.052 0.057 0.063 0.054 0.054 0.054 0.053

0.052 0.059 0.052 0.054 0.057 0.054 0.054

0.059 0.054 0.053 0.055 0.055 0.053

0.052 0.050 0.053 0.057 0.053 0.083 0.053 0.053 0.053 0.052 0.052
0.059 0.058 0.057 0.058 0.056 0.054 0.056 0.055 0.055 0.055

0.061 0.065 0.061 0.061 0.059 0.060 0.059 0.059 0.059

0.081 0.071 0.072 0.067 0.069 0.068 0.067 0.067

0.080 0.082 0.077 0.079 0.077 0.076 0.075

0.096 0.087 0.088 0.086 0.085 0.083

0.5

0.8

QU W N RO Uk W -

(@)

Note: Table 10 reports empirical null rejection rates for the weekends missing case for the CEWC approach. The

nominal level is 5%.

Table 11: CEWC: Average Size-adjusted Power for 8 € [0, 5], Weekends Missing (7" = 60 out of 84)

P B values of G
2 3 4 5 6 10 12 15 20 30 60
0.5 0.587 0.554 0.532 0.564 0.572 0.569 0.569 0.561 0.567 0.582 0.582

1

2 0.821 0.823 0.822 0.826 0.822 0.826 0.827 0.822 0.824 0.826
3 0.868 0.867 0.866 0.866 0.864 0.864 0.864 0.864 0.863
4 0.881 0.880 0.879 0.879 0.881 0.879 0.879 0.879
) 0.888 0.886 0.888 0.888 0.886 0.887 0.886
6 0.892 0.892 0.894 0.893 0.892 0.892
1
2
3
4
5

0.8 0.283 0.300 0.288 0.259 0.285 0.282 0.286 0.282 0.283 0.283 0.283
0.598 0.595 0.603 0.599 0.597 0.600 0.602 0.603 0.602 0.603
0.699 0.695 0.696 0.697 0.699 0.698 0.697 0.697 0.699

0.728 0.726 0.728 0.730 0.727 0.730 0.729 0.729

0.743 0.746 0.744 0.747 0.744 0.745 0.745

6 0.754 0.755 0.756 0.756 0.755 0.755

Note: Table 11 reports average size adjusted power for the CEWC approach. The nominal level is 5%, and
the alternative hypothesis is 8 € (0, 5].
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Appendix

In this appendix we provide proofs for Theorems 1 and 2. Theorem 1 provides asymptotic results for the G — oo
with n fixed case. The proof closely follows proofs in the existing literature (Sun (2013) and Vogelsang (2012)).
Here we a provide key arguments for completeness.

Proof of Theorem 1(a): Under Assumption A, the following result is straightforward:
R 1 & -1 G
VG(B-8)=|5X 5| 2 m = @A), (3)
g=1 g=1

O

Proof of Theorem 1(b): When the kernel function satisfies relevant conditions that the kernel function is
symmetric, piecewise smooth with K(0) =1 and [;° K(z)zdz < oo, the kernel function Ky(r, s) = K((r — s)/b)

n [0,1] x [0,1] can be expanded by Mercer’s Theorem as Kp(r,s) = Y00 Unfn(r) fn(s), where v, is the
eigenvalue of the kernel and f,,(s) is the corresponding eigenfunction. Then, under Assumption A, the following
holds with b fixed (See Sun (2014) for details):

~CHAC

1 1
g LA / / K5 (r, $) AW, (r) Wi (s)/ AL ()

Here, K} (r,s) =K ((r —s)/b) — fo (r—m)/b) defO tfs)/b)dt+f01 follC((th)/b) dtdr. Then under
H07

-1 -1 -1
~CHAC

G G
~ / 1 = 1 =~
Wenac = VG {RB - 7‘} R el ZSZ,”” Q el Z Sg* R| VG [R[i’ - r}
g=1 g=1
1 1
= Wp(1)'ALQ. 'R/ [RchAc / / Ky (r, s)de(r)Wk(s)’AéchR’} RQ7IAWL(1)
0 0

11
= Wi (1)’ / / KK (1, 5)AVW o () Wi () Wi (1),
0o Jo
The weak convergence (=) result is straightforward from (3) and (4). In case of m =1,
Wi (1)
VI K ry )W (r)d Wi (s)

tcmac =

O

Proof of Theorem 1(c): Under Assumption A, the relevant LLN for Sy and the multivariate CLT for v, are

satisfied. Furthermore, the cosine basis functions ¢;(r) = v/2cos (rrj) are orthonormal with fo ¢j(r)dr = 0.
Therefore, the calculations in Sun (2013) apply. First, note that

R 1 & ~05) =~ !
A= gzl@. (9?) 5, = A, / 6;(r) (Wi (r) — drg(1))

_A/qu AW, (7 /¢j )dr =0

LWL / b3 () AW(r) " N (0, 1)

2

It follows that



which implies

B B B
5P C _ 155 L ) N g0 g/
0 =52 Y= Ay ) &7 YA
j=1 j=1 j=1
Here £§k) are i.i.d. N(0,I;) distributed. Hence, by definition, Zf’;l (fj(-k)ﬁ](k)/ is Wishart distribution with B

degrees of freedom and covariance matrix Ij: Zle fj(.k)gj(.k)/ 4 Wy (B, I). The under Hy,

1 -1 -1

G R G R
Weewe = VG (RE— r>/ R é Z soe grEwe é Z Sge R VG (Rﬂ — 7“)
g=1 g=1

-1

B
_ _ 1 1 _ _
= WY NQ'R | RO ez D6V NQI R | RO ANL(L)
j=1
-1

B
1 / d
=Wa(l) | 5 ST W (1) £ T2 4.
j=1

Because ¢;(r) are orthonormal basis functions, W, (1) and {fj(.m)} are independent. Then, by definition, the
limiting distribution of Wopw e is Hotelling’s T-squared distribution with dimensionality parameter m and B
degrees of freedom, T(m, B). Using the relationship between the Hotelling’s T-squared distribution and the F'

distribution, it follows that
B-m+1

Feewe = ————Weewe = Fn,B—m+1,
mB

where Fy, p_m+1 is the F distribution with degrees of freedom (m,B —m +1). When m =1,

tcewc = tB,

which is the student ¢ distribution with degree of freedom B. O

Next, we provide a proof for Theorem 2 which gives asymptotic results for the n, — oo, G-fixed case.

Proof of Theorem 2(a): When G is fixed, Assumption B2 implies

T79 T T TG G ° G
t=(9—1)nc+1
and Assumption B3 implies
1 & -1
12 1 9\ _ g—-
R DY vg:>A<Wk(G> Wk< G)) (6)
t:(g—l)ng—i-l

Hence,

g=1 g=1

G 4 e p g—1
+|2g@ A;(Wk (&) -m (%))
= QAW (1)
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g

Proof of Theorem 2(b): Recall that Assumption B states that the LLN and FCLT are satisfied for the
unclustered series v¢. Hence,

[rT) [rT) [rT)

T 221},; T 2th——2xtmt <B 5)

= Asz( )—TAWk( )
= AW(r),

where W(r) is a Brownian bridge. Next, note that

G
Zj]l[nc(j—l)-i-lgtgngj]:g for tene(g—1)+1<t<nggl.
j=1

Hence we can rewrite the CHAC estimator as

T

T

~CHAC T T G il —1)+1<t<ngj —
GQ _lzzlc(Z]lj [(,(] ) — —= (J]]bG 'Ut’U

S e —1)+1<7< w‘]) _

t=1 =1

Expanding the kernel function Ky(r,s) = K((r — s)/b) on [0,1] x [0,1] by Mercer’s Theorem as Ky(r,s) =
Yool Unfn(r) fn(s), where v, is the eigenvalue of the kernel and f,(s) is the corresponding eigenfunction (See
Sun (2014) for details) gives

G ~CHAC

T

T T oo G . . . G . . .

1 Z‘:lj]l [n(1(3_1)+1§t§nG]] Z‘z1jl[n(:(]_1)+1§7'§ns]] N
= i fi J : J /

00 T G . . . T G . . .
_ 1 21 Jh[ne(j —1) +1 <t < ngjl |1 >l ne(i—1)+1 <7 < nej] .
—;)\z T;fz( bG \/Tvt T;fz bG \/T/UT

G o G141 ; G o [GeDt i
o o (Y5 <r<i o (XY <s<il\ _
:>§:/\i/ fi< =l [ < G} AdW(r)/ fi( =1 [ ¢ G} DV (s) A’
- 0 0

1=1 bG bG
¢ g1 |u=lH j G g [G=D+1 j
1 1 Z/:l]]l{ el §r§§} Zj:lj]l {Téséa} - -
:A// Nt | = i AV (r)dW(s) A
o Jo ZZ; g ( bG / bG (r)dW(s)

o p a . . )
7/\// ( jlj]l (Jé)Jrlgrgé] Zj:lj]]'[(jé')+1§s§é

= AP,(G,b)A
Then under the null hypothesis Hy, the Waldcgac statistic follows the limiting distribution as defined below:
~ N -1 ~
Wenac =VT (RB=7) [RVenacR| VT (RB-1)

= [RQ'AW(1)]' [RQ'AP(G,b)A " R] "' RQ™ " AW,(1)
= Wi (1) [P (G, 5)] ™ Win(1).
When m =1,

Wi (1)
P (G,b)

tcmac =
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An alternative approach to obtaining a limiting result for the variance estimator follows Kiefer and Vogelsang
(2005). First note that

j=1 j=1 fj=1
= AWk (%) - %QQ_IAWk(l)
_ (W (%) - %Awk(l)> = AW, (%) . (7)

G ~CHAC e~ lg — h| lg—h+1] lg —h—1] 1
o) - T 2K (T ) K () =K || T
T 259[K< e )N\ S *5h

1
G-1G-1 /
(9 lg—hl\ (lg—h+1]\ . (lg—h-1] o (R
= A Ll > Wk(G) (2/c <7MG > /c(iMG (e ) )

For the Bartlett kernel, the specific result is

A

GsoHac R g lg = h| lg = h+1] lg—h—1] 15
—Q = T725, (2K —k|l——— | - K| =——)|T725
T 29[ (MG) (MG) (MG )} o
g=1 h=1
0 G . | G Me L e
- =N 75,5, - — T™3S,T7%58, 1o SerngT S,
G g=1 ¢ g=
2 G-1 G—Mg—1

Proof of Theorem 2(c): Straightforward calculations give

AR S

57rj> T71/2%g

G —05 y 1
4 AZ V2cos J ﬂ'j> Zg, Zg Lid <O, —Ik>
g=1
d id.d.
= A&, § XN (0, 1k). (10)

The weak convergence (=) in (8) is obvious using (7):

TV, = A [Wk (%) — W (%)} —A [Wk (%) — Wi <%> - éwku)} .

The equality in (9) is also straightforward because Zngl CoS [(%)} =0forje{l,...,B}, B <G which
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is simple to show:

G . G
— . T ]_— Bimj
Zcos [((9 275)717)] Zel(g 0.5)mj Re{ em 605GJ}

g—=1 1—e7<
1-— ”r]) (e 2G — e 72%” )
2 <1 — cos )
sin (77) sin (ZG)
- 1 —cos (g)
Finally, the last equivalence in distribution <i> in (10) holds from the following two equalities. First, for
je{l,...,G -1},

= Re

~0. (11)

g=1 g=1
G
1 I iRe ez(g OG.5)27rj
G e
1 1 2] in
1+5R6{ emj xe?J}
1—e@c
e (1 — ei2md) <e% _e’é”)
_ — Re '
G 2 (1 — Cos (%))

Second, {&;} is a sequence of independent random variables because for j # k, j + k < 2G,

o (158 (202 L5 (o (45000 on

9=1

wG+h))

L ((sin(aj k) | sin (x(j + k)
sin <W(;5k)> sin (%)

From (10),
G

~ o~ (k) (k)/ ,
_TAjAj = Aﬁj fj A
and the asymptotic limit of the CEWC estimator is

G=CEWC

B
re) _ (k) o (k)
7" _TEZ: S

& =
10

By definition, Zle fj(k)g](-k)/ is a Wishart distribution: 2;3:1 g](.’“)gj(.’“)' 4 Wy (I, B). The limits Fopwe and
tepwe easily follow using similar arguments as in the proof of 1(c).
O
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Supplemental Appendix A: Additional Theoretical Results (Not for Publication)

In this supplemental appendix we provide some additional theoretical details. First we sketch the asymptotic
theory for the case where the number of clusters does not evenly divide the sample. Then we sketch the
calculations for the data dependent bandwidth results.

1. Clusters Do Not Evenly Divide the Sample

Suppose the last cluster has n) < ng observations. For the G — oo with ng fixed case, this would have
asymptotically negligible impact. In the G-fixed and n, — oo case the last cluster matters. Assume that
ny/ne = A and A is fixed as ng — 0o. The following theorem gives the limit of the CHAC statistics.

Theorem 3 Suppose that the number of observations are not an exact multiple of G and the last cluster has
n; number of observations, n; < ng. Suppose that Assumption B is satisfied and n;/ne = 1 and | is fixed as
ne — 00. Then, we have the following result.

(a) Asymptotic normality of OLS:

(b) CHAC result: Assume Mg = bG where b € (0,1] is fized. Define

by (Ga MGaK() 7)‘)
G-1G-1 /
S50 (gi) (< () < () < (5 ) % (61

G =CHAC ,
TQ EAPk(GaMGalC()7)\)A>

and under Hy,
Werac = Wm<1)lpm(Ga MG’: IC(')’ /\)_1Wm(1>'

When m =1,
Wi (1)

VPG, M, K(),\)

tcaac =

Proof of Theorem 3(a): With ny/n, = A and A is fixed as n, — oo, it follows that

N _ Ng _ 1 _ 1 (12)
T ne(G-=1)+ny G-1+(ny/ng) G—-1+X\
Using (12), it follows that when g < G — 1, Assumption B2 implies that
1 1 g g—1 1
T /
Leow 1 _ _ , 1
T Mt D DI e b e LA e L Al S By U (13)
t:(g—l)n(;+1
When g = G,
T
1 1 . G-1 l
—grr _ — = . 14
FE =5 > wmn=Q-g 1 59=a-7,9 (14)
t:(G—l)nG—f—l
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Similarly, when g < G — 1, equation (12) and Assumption B3 implies

1 & —1
TV2% — — 9 \_ 9=
RS Ug:>A<Wk<G—1+)\> Wk(G—lJr)\))' (15)
t=(g—1)nc+1
When g = G,
T
1 G-1
7125, — L _ et
lel T Z vgiA(Wk(l) Wi (G—l—l—)\)) . (16)
t=(G—1)ng+1
From (13)-(16),
R 1 & - e
VT (B-8) = S>os| TEYT = QAW (),
g=1 g=1
- O
Proof of Theorem 3(b): Define 725, = 22:1 g"fg 1)nc+1 . When h <G —1,

g=1 g=1

- g g—1 h g—1

A G-1+x) AW, (1
:>g§_:1 [Wk(g_ur)\) Wk<G_1+/\>] 92_:1[ _1+)\ G_1+)\QQ Wi (1)
_ g g
_A[Wk<G—1+)\> G—1+)\W ] _1+)\>

The weak convergence is straightforward from (13) and (15). When h = G, it follows from the OLS first order
conditions that T’ 7%35; = 0. Using summation by parts,

GocHAC GZ1G2l o |s — Al |s —h+1] |s —h —1] 12/
5 o () e () e (B

G

G—-1G-1 /
|s — h| |s —h+1] s —h—=11\\ = h ,
AL i) e (o) 2 () e ()™ (61 |2
= APk (G, Mg, K () 5 )\) A/.
Then, it is straightforward to show that
-~ / —~ —1 —~
Wenac = (R/B - ?“> [RVCHACR/} (Rﬁ — 7“)
~ / ~ —1 —~
=VT (RB—7) [RTVenacR| VT (RB-r)
= [RQ'AW(1)] [RQ'APL(G, Mg, K(-), VA" R] " RQ™' AW, (1)
= Wy (1) P (G, M, K(-), \) " Wi (1).
When m =1, R
" RB -T N Wl(l)
CHAC — .
\/R‘?CHAC'R/ \/Pl(G,M(;,IC(‘),)\)
O
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2. Data Dependent Bandwidth Formulas

This section sketches the derivation of the data dependent bandwidth results given in Section 5. We first derive
formulas for the MSE-optimal bandwidth followed by the test-optimal bandwidth. We begin by stating the well
known result that if v; is an AR(1) process then T, is an ARMA(1,1) process and the AR and MA parameters
are functions of the parameters of the original AR(1) process, v;. The proof follows Amemiya and Wu (1972)
and is omitted.

Result 1 Let vy be an AR(1) process with an AR coefficient p:
vy = pvp—1 + e, var(e) = Jg.

Then, the non-overlapping time aggregated process with n time periods, Uy = ZthE’g_l)nCH vy, is an ARMA(1,1)
process
6_(] = ¢ngl +€g+77€g713 g = 17"'7G7

with AR and MA coefficients that are functions of p, ng, and o given by
271‘
Y + 47

p=p" n=

where

R =
ng—1 J _ 2 ng—2 J 2
ny)k _ Z <Z pz> + Z (Z pn(, 1— 1) Ug;

j=0 \i=0 i=0

ng—1 nag . 7j—1
= D A < o’

j=1 i=j+1

Using Result 1 the following holds for the long run variances and derivatives of the spectral densities
evaluated at frequency zero of v; and .

Result 2 Let vy be an AR(1) process with an AR coefficient p:
v = pu—1 e, var(e) = 052.

Define the non-overlapping time aggregated process, T, = Zﬁ?g—l)nmul ve. Let Q) = Zj_ 17197 and

ng) = Z;’;foo |7|9T;, where I'; and T'cjare the autocovariance functions of v and Ty, respectively. Then, the

following equalities hold:

Q. =0,
Qg) =W,
1+p")(1 - p)
0 — g
(L=pme)(1+p)

Proof of Result 2: From Result 1, 7, is the ARMA(1,1) process
(1_¢L)ﬁg = (1_17L)697 g = 17"'a

with ¢, 1, 02 defined as functions of p and o2. The autocovariance functions is given by

2
Lo = o7 (1 + (fjgg> S 03(¢+17)_(;;L czﬁn)?

ch = ¢ch71>j > 2,
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and straightforward calculations give

First

and

j=—00

o0

¢ +n)(1+ ¢n)

o = 3 jiry =207 0K

R2 =P +9)
o0

. +n)(1+¢n)

0@ _ Pl = 2 2(¢ .

‘ J_ZOO v (1-¢)t
note that using ¢ = p"¢, % = (1 +n?)o2, and 7§ = no? in Result 1 we have the following:
(1 — pnc 2
(140?02 = (L+ 7)ol + 2n07 =5 + 291 = %03

(¢+ (1 +on)og = o(1+ 1)l + (1+ ¢%)no;
= (0" + (L + ") 1) 02

_p(l=p") (1 4p")

L=pP+p

Plugging these expressions into {2, Q((;l), and Q£2) gives

Ne 9
Qc = WUE = TLGQ,
p(l(—lp"G)f((ller)"G) 2
le) —9 p)°(1+p 02 _ 0_2 — Q(1)7
(L=pre)pP(+pme) = (1=pP>1+p) °
p(1—p"G)* (14p"6) ne na
0@ _o_ 0—0Uts) 2 _ 2p(1 + p"°) 2 _ @1 +p")(1-p)
S ) KR Iy M (e D ()

0

Result 3 Denote the MSE-optimal bandwidth without clustering as M7 and the MSE-optimal (Mg, ng) pair as

(MG7

1.

nk). Suppose that vy is an AR(1) process with AR parameter p. Then the following holds.

For kernels with q = 1, the minimization of the CHAC-MSE can only determine the product ng*M¢, but
not ng* and Mg, individually and the following equality holds:

1

2 3
R k2 QW) .
nGMG = C—i (W T = MT'

For kernels with ¢ = 2 suppose that 0@ > 0 and p > 0. Then the minimization of CHAC-MSE has a
corner solution with n}, = 1.

Proof of Result 3: The notation used in this proof is defined in Section 5. Following Andrews (1991), the
MSE of the usual HAC estimator is

MSE (Q) (%\2?) CQQ2MT
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1-K(x)
EE

where My is the bandwidth, ¢ € [0,00) is the largest integer such that k, = lim,_
fIC($)2dSL‘. Similarly, for the CHAC estimator, when G — oo,

2
1 ~CHAC 1 ~CHAC 1 0l M.
MSE (—Q ) = —MSE (Q > ~— (kq ) + 20,0225,

< 00, and ¢ =

2
Ng G ng

where Mg is the bandwidth. When v; is an AR(1) process, using Results 1 and 2 we can rewrite Q. and QEQ)

as functions of Q and Q@ . With T = n.G, the MSE criteria for ¢ = 1 (Bartlett) and ¢ = 2 kernels becomes

ki QLD ? 2 ng M, B

MSE (iﬁCHAC> _ (b)) +200 el i1
Ne k Q(2> (1+pnG)(1_p) oM -

G (niMé (17pn(;)(1+p)> + 2¢oQ° 16 q=2.

For ¢ = 1 the MSE formula depends on n, and Mg only through the product noMg. Therefore, minimization
of the MSE can only determine the product but not ng and Mg individually. If we replace no Mg with My, then
the MSE criteria is identical to the no-clustering case. By straightforward calculation, we have the following
equality:

2
nGMG = MT = c—i (W T

This expression can be further simplified with k; = 1 and ¢y = 2/3 for the Bartlett kernel.
For the kernels with ¢ = 2, to obtain the bandwidth and the size of the cluster that jointly minimize the MSE
criterion, first take the cluster size, ne, as given. Suppose that Q) > 0. Then by straightforward computation,

OMSE 2)(L+p")(1 —p) S ne2co$)?
= | k202 = =0.
OMg (1—=pre)(1+p)) n2M T

Solving for Mg gives

1/5
M¢ =

2T (k2022)) ((1 + pe)(1 — p)>2 1 ]1/5 Y

202? (1—p)(1+p)) nd

((1 +p") (1 p)>2 1
(L=p")1+p)) nd

Time series with positive serial correlation satisfy Q(2) > 0. Plugging M¢, back in to the CHAC-MSE criterion,
the concentrated MSE criterion function, denoted by MSE(M), becomes

MSE(Mg) = |:(]{;2Q(2))2 N 2@92] <(1 + pe)(1 — p)>2/5 25

T \a=po)1+p)
s (L))
= ng — C.
(1 —pne)
Here C is a positive constant that does not depend on n. This expression is increasing in ng when 0 < p < 1.
Therefore, the MSE minimization has a corner solution with n}, =1 when p > 0. O

Similar results hold for the test-optimal bandwidth approach as given by the following result.

Result 4 Denote the test-optimal bandwidth without clustering as M7 and the test-optimal bandwidth/size of

a cluster as (Mg, ny) with clustering. Suppose that vy is an AR(1) process with the AR coefficient p. Then, we
have the following results.

1. Suppose that (Q1) /Q) {wG’LO (22) — '175 (22)} > 0. Then, for the kernels with ¢ = 1, the minimization
of the CHAC-SPJ loss function can only determine the product nyM¢ but not n,* and M} individually

and the following equality holds:

36



2. Suppose that (Q(Q)/Q) {wG’LO (22) — G/L(S (22)} > 0. Then, for kernels with ¢ = 2, the minimization of
CHAC-SPJ loss function has a corner solution with n}, = 1.

Proof of Result 4 Following Sun et al. (2008) (SPJ), the test-optimal bandwidth minimizes the SPJ objective
function, which is a weighted average of the approximate type I and the type II errors of the test statistic. With
weight w/(w+ 1) on the type I error and a fixed local alternative, the loss function for the usual HAC approach
(no clustering) is given by

Q@ My

a T

after dropping a term which does not depend on M and scaling by (1 + w). Here, G, () is the cdf of a
non-central chi-square-¢g random variable with non-centrality parameter A2, Ks(z) = 52Gé7 s(x)/2x, and § is a
parameter that defines the alternative hypothesis (see Sun et al. (2008) for details). Similarly, for the CHAC
approach, the SPJ objective function is

L(M:4,T,z) =k, {wG 4 (2%) — L6 (2%)} 22 (Mr) ™ + c22 K (2?)

Q0 _ Mg,
LEHAC (Mg, ne; 6, G, 2) = kqQ— {wG (2°) = Ghs (2%)} 2 (Ma) ™7+ 0224K5(22)—5 .

When v; is an AR(1) process, 7, is an ARMA(1,1) process (Result 1). Using Result 2, QY and Q. can be
rewritten in terms of Q@ and Q. Then, with T' = n.G, the SPJ loss function becomes

‘CCHAO(MGa Ne; 6) T7 Z)

(1) _ .
MO {0t () = Gy ()] (0 + o7 s -1
@) nG 1- _ , :
kz% ng }tgn? %ﬁ) {U’GII,O (22) — ’175 (22)} 22(Mgne) ™2 + 0224K5(22)7M§}”(’ qg=2

For the ¢ = 1 kernels (Bartlett kernel), note that the SPJ loss function depends on ng and Mg only through the
product ngMq. Therefore, minimization of the SPJ loss function can only determine the product but not ng
and Mg individually. If we replace ng Mg with M7, then the SPJ loss functions is the same as the no-clustering
case. Therefore, by straightforward calculation we have the following equality:

Ve * k12° Q(l) :
ity =01y = (e Ty (060 () - 61 () 7).

This expression can be further simplified with k; = 1 and ¢y = 2/3 for the Bartlett kernel.
Next, consider the kernels with ¢ = 2. Let ng be given. By straightforward calculation,

GECHAC(Mg;nG, 0, T, 2)

OMg
0@ L+p%1—p 2 NV L2/ \—27,—3 4 2\ e
=ks Q <nc1 el p) {WG/LO (Z ) - /1,6 (z )} 2°(ne) "Mg"(=2) + c2z Ko (2 )T =0.
When (Q@ /) {wG,l,O (2%) — 15 (z2)} > 0, the test-optimal M, given ng, is
Q2 (14p"6 1—p ! 2 / 2 2 1/3 1
M* _ 2]€2T (1—p”G m) {wGl,O (Z ) — U5 (Z )}Z T B . 11 +p7L(, 1— P /3
¢ c2z K 5(22)n2 ST\ n21—pre14p '

Using this formula for M¢, the concentrated loss function, denoted by LOHAC (n; Mg, T, 2), is

LOHAC (s M, 6, T, 2)

=k Q@) (14 1—p Q' (2 I2\ L2 ez Ks(z) )’ v 2% 4925
8 (20 (it () — G () 2 ()L (03 4 00)

1 ne\ 1/3
-(vrm)
1— pne
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where C is a constant that does not depend on n and is positive if (Q(2)/Q) {wG’LO (22) — G5 (zQ)} > 0.

The expression, (%%); is an increasing function of n.;. Hence, minimization of the SPJ loss function has
a corner solution at nf = 1 if (Q()/Q) {wG’LO (2?) = Gl (22)} > 0. O
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Supplemental Appendix B: Asymptotic Critical Values (Not for Publication)

This section reports simulated asymptoptic null critical values for the Bartlett kernel topac statistic using
ne — oo and G-fixed asymptotics (and hence Mg /G is fixed as well) as in Theorem 2.

Table B: Fixed-G, large-ng Asymptotic Critical Values

1% 2.5% 5% 10% 50%  90% 95% 97.5% 99%

—45.991 -17.920 —-8.992 —-4.390 -0.010 4.375 8874 17.942 46.230
—65.041 —-25.342 -12.716 —6.208 —0.014 6.187 12.550 25.374 65.379

-8.710 —-5.323 —-3.605 -—-2.325 -—0.008 2305 3.563 5.227  8.680
—-11.315  —=7.057 —4.702 -2.997 —0.009 2980 4.618 6.805 11.286
—13.858 —8.642 —-5.759 —-3.671 —0.012 3.650 5.656  8.334 13.823

-5.303 -3.670 —-2.724 —-1.917 -0.008 1.896 2.723 3.676 5.214
—6.945 —4.716 —3.428 -2.349 -—-0.008 2.346 3.409 4.679 6.769
—-8.006 —5.603 —4.038 -2.782 —0.010 2.764 4.045 5.518 7.931
—-9.243 —-6470 —4.663 -3.212 —-0.012 3.191 4.671 6371  9.158

—-4.143 -3.120 -2407 -1.732 -0.007 1.720 2381 3.124  4.240
-5.272  —-3.857 —-2907 -2.056 —0.008 2.050 2.886 3.829  5.322
—6.288  —4.540 —-3.407 -—-2.403 -—0.009 2390 3.397 4.492  6.246
-7.010 -5.136 —-3.874 -—-2.720 -0.010 2.710 3.847 5.092  7.069
—-7.837 5742 —4331 -3.041 -0.011 3.029 4301 5.693 7.903

-3.693 —2.837 —-2.230 -1.628 —0.007 1.623 2209 2.805 3.641
—4.526 —-3.396 —2.615 —1.887 —0.007 1.872 2598 3.349 4.514
—-5.356  —3.980 —-3.022 -2.159 -0.008 2.152 3.026 3.915 5.301
—6.006 —4.507 —3.430 —-2434 -—-0.009 2410 3.400 4.427 5.945
—6.619 —4.942 -3.775 -2.684 —-0.010 2.671 3.754 4.883 6.564
—7.251 —5414 —4.136 —-2.940 -—-0.011 2926 4.112 5349 7.190

—-3.405 —2.658 —2.114 -1.569 —0.006 1.554 2.108 2.651 3.401
—-4.057 -3.114 -2431 -1.778 -—-0.007 1.768 2413 3.089 4.110
—4.752  =3.576  —-2.779 -2.004 -0.008 1.992 2.764 3.570 4.770
-5401 —4.032 —-3.128 -—-2.239 -—-0.009 2225 3.099 4.003 5.358
—-5.949  —4.436 —-3.461 2470 —0.009 2448 3.409 4.436 5.913
—-6.394 —4.823 —-3.749 -2.681 -—0.010 2.666 3.709 4.816 6.358
-6.906 —5.209 —4.050 -2.896 -—0.011 2879 4.006 5.202 6.868

—-3.210 —-2.526 —2.048 -—1.522 —-0.006 1.516 2.035 2.530 3.208
-3.749 —-2915 2311 -1.704 —-0.007 1.693 2.298 2.908  3.746
—4.346 —-3.324 —-2.611 -—-1.899 —-0.007 1.895 2.593 3.324 4.351
—4.945 -3.739 —-2.907 -2.100 —-0.008 2.095 2.893 3.720 4.878
—-5.457  —4.109 —-3.205 —-2.300 —0.009 2.289 3.185 4.082  5.364
5876  —4.454 3474 —-2.485 —-0.009 2484 3.452 4.445 5.799
—-6.279  —4.788 -3.731 -—-2.673 —-0.010 2.675 3.698 4.767  6.228
—-6.712  -5.118 —-3.989 —-2.857 —0.011 2.860 3.954 5.096 6.658

-3.099 —-2.467 —-1.997 -1498 —-0.006 1.482 1.980 2465 3.084
—-3.559  =2.779  -2.222 -1.648 -0.007 1.630 2212 2773  3.553
—-4.079 -3.138 —-2491 -1.820 -0.007 1.808 2462 3.137 4.057
—-4.630 -3.513 —-2.743 -1.994 -0.008 1.988 2.723 3.512  4.554
-5.091 -3.880 —-3.015 -2.167 -0.008 2.156 2988 3.859  5.017
-5.493 —4.196 —-3.268 -2.342 -0.009 2.332 3.223 4.165 5.439
—-5.878  —4.481 —-3.496 —2.510 -—0.009 2498 3470 4456 5.801
—-6.227  —4.769 -3.716 -2.674 -0.010 2.662 3.692 4.743 6.137
—-6.605 —5.068 —3.941 -2.836 —0.010 2.823 3916 5.031 6.509

%«
Q"
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10 —-2.989 —-2401 —-1.954 -—-1.470 -0.006 1.463 1.951 2.394 2.986
10 —-3.383 —2.692 —-2.149 -—-1.606 —0.007 1.594 2.144 2.680 3.434
10 -3.876  —-3.000 —-2.382 -—1.749 —-0.007 1.749 2371 3.021 3.883
10 —-4.310 —-3.325 —-2.613 -—-1.911 -0.007 1.908 2.606 3.358 4.348
10 —4.761 —-3.655 —2.849 -—-2.069 -—0.008 2.063 2.839 3.663 4.733
10 —-5.156  —3.943 -3.072 -—2.237 —-0.008 2.223 3.0656 3.948 5.144
10 5497  —4.222 -3.296 -—-2.391 —-0.009 2369 3.289 4.231  5.520
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Fixed-G, large-ng Asymptotic Critical Values (Cont’d)

G | Mg 1% 2.5% 5% 10% 50% 90%  95% 97.5%  99%
10| 8 | —5.827 —4.472 —-3.498 -—2.538 —0.010 2.520 3.491 4.494 5.868
10| 9 | —6.134 —4.730 —-3.698 —2.685 —0.010 2.673 3.690 4.747 6.178
10| 10 | —6.465 —4.986 —3.898 —2.830 —0.011 2.818 3.889 5.004 6.512
11 1 —2910 -2.350 —-1.913 —-1.447 -0.006 1.442 1904 2.333 2.916
11| 2 | -3.314 -2.612 -2.101 -—-1.565 —0.007 1.563 2.081 2.581 3.267
11| 3 | -3.724 -2.899 -2.303 -—-1.708 —0.007 1.690 2.284 2.868 3.669
11| 4 | —4112 -3.198 -2.519 —-1.846 —0.007 1.839 2.491 3.193 4.068
11| 5 | —4.536 —-3470 -2.746 —1.995 —-0.008 1.983 2.711 3.469 4.485
11| 6 | —4.899 —-3.750 —-2.959 —2.137 —-0.008 2.121 2919 3.741 4.868
11| 7 | —5.240 —-4.017 -3.157 —-2.285 —-0.009 2.264 3.112 4.000 5.171
11| 8 | —5.548 —4.260 —-3.346 —2.422 —0.009 2402 3.307 4.259 5.488
11| 9 | —5.842 —4.495 —-3.524 —-2.553 —0.010 2.534 3.495 4.469 5.789
11| 10 | —6.143 —4.713 -3.710 -2.688 —0.010 2.666 3.675 4.708 6.055
11| 11 | —6.443 —4.943 -3.892 —-2.819 —-0.011 2796 3.855 4.937 6.351
12 1 —-2.867 —2.311 —-1.889 —1.428 -0.006 1.427 1.884 2304 2.840
12| 2 | -3.173 -2.541 -2.057 -1.537 -—0.007 1.538 2.044 2.526 3.167
12| 3 | —3.583 —-2.806 -2.236 -—-1.662 -—0.007 1.661 2.226 2.800 3.533
12| 4 | -3.932 -3.066 —-2426 -1.793 -—0.007 1.785 2.420 3.057 3.899
12| 5 | —4.325 —-3.328 -2.621 —-1.923 —-0.007 1.921 2.613 3.321 4.271
12| 6 | —4.667 -3.609 -2.814 -2.055 —0.008 2.053 2.804 3.586 4.617
12| 7 | =5.003 -3.854 —3.008 —2.188 —0.008 2.175 3.000 3.826 4.935
12| 8 | —=5.300 —4.096 -3.188 —2.321 —0.009 2309 3.174 4.037 5.230
12 9 | —5.587 —4.289 —-3.365 —2.446 —0.010 2.426 3.349 4.266 5.512
12| 10 | —5.862 —4.509 —3.541 —2.563 —0.010 2.548 3.508 4.467 5.819
12| 11 | —6.129 —-4.720 -3.703 -—2.684 —0.010 2.664 3.682 4.676 6.097
12| 12 | —6.402 —-4.930 —-3.868 —2.803 —0.011 2.783 3.846 4.884 6.368
13| 1 —2.795 —2.281 —-1.869 —-1.424 -0.006 1.415 1.864 2.273 2.811
13| 2 | —-3.100 —-2499 -2.018 -1.521 —-0.007 1.516 2.016 2.496 3.095
13| 3 | —3.444 -2.726 -2.191 —-1.630 —0.007 1.624 2.184 2.724 3.416
13| 4 | =3.797 -2975 -2370 —-1.751 —0.007 1.743 2.354 2971 3.801
13| 5 | —4.168 —-3.216 —-2.556 —1.874 —0.007 1.860 2.532 3.217 4.132
13| 6 | —4.481 -3460 -2.724 -1.992 —0.008 1.984 2.721 3.448 4.446
13| 7 | —4.790 -3.686 —2913 -—-2.117 —-0.008 2.100 2.891 3.684 4.775
13| 8 | =5.094 -3915 -3.090 -2.236 —-0.009 2214 3.064 3.894 5.053
131 9 | =5.350 —4.128 —-3.248 —-2.355 —0.009 2332 3.230 4.123 5.300
13| 10 | =5.612 —4.328 —-3.408 —2.473 —0.009 2448 3.393 4.315 5.586
13| 11 | —5.859 —4.528 —3.559 —2.584 —0.010 2.563 3.540 4.511 5.828
13| 12 | —6.107 —4.706 —-3.717 -2.694 —0.010 2.675 3.690 4.705 6.084
13| 13 | —6.356 —4.898 —-3.869 —2.804 —0.011 2.784 3.841 4.897 6.333
14| 1 —2.765 —2.265 —1.846 —1.413 —0.006 1.405 1.843 2.250 2.748
14| 2 | =3.030 —-2.447 -1.995 —-1.500 —-0.006 1.495 1.979 2.437 3.046
14| 3 | =3.345 -2.657 —2.151 —-1.605 —0.007 1.591 2.140 2.653 3.358
14| 4 | —-3.683 —-2.893 -2.315 -—-1.715 —-0.007 1.701 2.289 2.886 3.665
141 5 | =3.994 -3.121 -—-2.477 -—-1.827 —-0.007 1.814 2.451 3.114 4.003
14| 6 | —4.314 -3.341 -2.640 —-1.934 —-0.007 1.922 2.624 3.344 4.298
14| 7 | —4.609 —-3.574 —-2817 -—-2.048 —-0.008 2.031 2.787 3.551 4.587
14| 8 | —4.906 —-3.783 —-2982 -—2.158 —0.008 2.146 2.959 3.769 4.844
141 9 | =5.176 —-3.972 -—-3.128 -—2.275 —-0.009 2.262 3.103 3.970 5.096
14| 10 | —5.383 —4.154 —-3.278 —2.387 —0.009 2.365 3.249 4.173 5.358
14| 11 | —=5.611 —4.340 —-3.423 —2.488 —0.009 2473 3.402 4.350 5.603
14| 12 | —5.865 —4.522 —-3.566 —2.587 —0.010 2.573 3.546 4.528 5.857
141 13 | —6.095 —4.707 —-3.715 —-2.694 —0.010 2.677 3.683 4.703 6.091
14| 14 | —6.325 —4.885 —3.856 —2.795 —0.010 2.778 3.822 4.881 6.321
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Fixed-G, large-ng Asymptotic Critical Values (Cont’d)

G | Mg 1% 2.5% 5% 10% 50%  90%  95% 97.5%  99%
15| 1 —2.717 —2.230 -1.834 -1.401 -0.006 1.393 1.834 2235 2.723
15| 2 | —2.965 —-2420 —-1.965 —1.488 —0.006 1.475 1.952 2.410 20971
15| 3 | —3.256 —-2.613 —-2.106 —1.577 —0.007 1.574 2.089 2.601 3.249
15| 4 | —3.558 —2.822 —-2.257 —-1.679 —0.007 1.675 2.241 2.811 3.564
15| 5 | —=3.875 —=3.021 —-2417 -1.786 —0.007 1.777 2.394 3.029 3.847
15| 6 | —4.177 —-3.245 -2.570 —-1.889 —0.007 1.881 2.551 3.237 4.155
15| 7 | —4.430 —-3.445 -2.733 -—-1.991 —-0.008 1.990 2.711 3.433 4.424
15| 8 | —4.727 -3.656 —2.887 —2.097 —0.008 2.086 2.863 3.638 4.681
15| 9 | —4980 —-3.851 —3.023 —2.208 —0.009 2.192 3.010 3.834 4.949
15| 10 | —=5.206 —4.010 —-3.171 —-2.315 —-0.009 2299 3.159 4.004 5.176
15| 11 | —5.416 —4.196 -3.312 —-2.412 —-0.009 2397 3.293 4.167 5.422
15| 12 | —=5.618 —4.372 —-3.443 -2.511 —-0.010 2498 3.428 4.339 5.619
15| 13 | —5.826 —4.531 —-3.578 —-2.606 —0.010 2.596 3.555 4.510 5.844
15| 14 | —6.036 —4.702 -3.704 -2.704 —-0.010 2.691 3.688 4.665 6.059
15| 15 | —6.248 —4.867 —-3.834 —-2.799 —-0.011 2.785 3.817 4.829 6.271
20| 1 -2.606 -2.160 -1.780 -1.369 -—0.006 1.360 1.781 2.156 2.604
20 2 | —2.786 —2.290 —-1.875 —1433 -—-0.006 1.426 1871 2.289 2.780
20 3 | —2.998 —2.443 —-1.986 —1.499 -—-0.006 1.492 1.969 2431 2.990
20| 4 | —3.227 —-2590 -2.099 -1.572 —0.006 1.565 2.080 2.577 3.221
20| 5 | —3.446 —2.747 —-2209 -1.642 —0.007 1.640 2.197 2.732 3.440
20 6 | —3.686 —2.895 —-2320 -—1.722 —0.007 1.718 2300 2.903 3.642
20| 7 | =3.900 —-3.050 —-2.438 —1.802 —-0.007 1.795 2420 3.068 3.880
20| 8 | —4.138 -—-3.211 -2.551 -1.881 —0.007 1.875 2.538 3.221 4.101
20 9 | —4.343 —-3.357 —-2.666 —1.959 —0.008 1.950 2.651 3.370 4.327
20| 10 | —4.530 -—-3.514 —2.788 —2.036 —0.008 2.025 2.769 3.520 4.520
20| 11 | —4.724 —-3.661 —2.905 —-2.118 —0.008 2.101 2.880 3.668 4.723
20| 12 | —4.943 —-3.793 -3.013 -2.197 —-0.009 2.177 2994 3.800 4.890
20| 13 | =5.093 —3.927 -—-3.126 —-2.273 —0.009 2.254 3.096 3.944 5.061
20| 14 | =5.305 —4.063 —-3.230 —2.347 —-0.009 2.329 3.195 4.071 5.256
20| 15 | —=5.441 —4.196 —3.328 —2422 —0.009 2.405 3.296 4.202 5.403
20| 20 | —=6.235 —4.801 -—-3.823 -—-2.779 —0.011 2.762 3.785 4.815 6.221
30| 1 —2490 —-2.088 —-1.731 -—-1.343 -0.006 1.332 1.732 2.089 2.501
30 2 | -2.615 -2.166 —-1.794 -1.381 -0.006 1.373 1.796 2.172 2.618
30 3 | —2.745 —-2.266 —1.867 —1.422 -0.006 1.416 1.857 2.267 2.749
30 4 | —2892 -2368 —-1936 —-1.469 —-0.006 1.463 1.925 2.365 2.895
30 5 | =3.035 —2464 -2.013 -1.516 -0.006 1.511 1.992 2457 3.041
30 6 | —3.192 2571 -—-2.087 -1.563 —0.007 1.560 2.069 2.555 3.193
30 7 | =3.355 —2.673 -—-2.163 -1.614 -0.007 1.610 2.150 2.661 3.349
30 8 | =3491 2766 —2.238 —1.669 —0.007 1.657 2223 2.767 3.474
30 9 | -3.651 —-2.880 -2.312 -1.718 -0.007 1.711 2293 2.881 3.624
30| 10 | =3.795 —2.985 —-2.392 -1.768 -0.007 1.763 2.366 2.994 3.770
30| 11 | =3.945 —-3.087 —2.464 -1.822 -0.007 1.815 2441 3.101 3.918
30| 12 | —4.083 —3.194 —-2.545 -—1.875 —0.007 1.866 2.520 3.189 4.075
30| 13 | —4.228 —-3.293 —-2.622 -1.923 -0.008 1.917 2598 3.289 4.224
30| 14 | —4.357 —-3.404 -2.701 -1.974 -0.008 1.973 2.683 3.383 4.358
30| 15 | —4.482 —-3.508 —2.779 —-2.026 —0.008 2.022 2.762 3.480 4.488
30| 20 | —=5.104 —3.968 —3.140 -2.292 -0.009 2.273 3.115 3.954 5.070
30| 25 | —=5.617 —4.397 —-3.480 -—2.534 -0.010 2.519 3.453 4.372 5.634
30| 30 | -6.138 —4.799 -—-3.804 -2.771 -0.010 2.752 3.780 4.782 6.170
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Fixed-G, large-ng Asymptotic Critical Values (Cont’d)

G | Mg 1% 2.5% 5% 10% 50% 90%  95% 97.5%  99%
40 | 1 —2.462 -2.055 —-1.709 -1.330 —-0.006 1.320 1.711 2.067 2.450
40| 2 | —2.546 —2.121 —-1.756 —1.359 —0.006 1.347 1.754 2.127 2.525
40| 3 | —2.630 —-2.189 —1.802 —-1.390 —-0.006 1.382 1.798 2.194 2.635
40 | 4 | —2.741 -2.267 —-1.859 —1.421 —-0.006 1.418 1.854 2.266 2.728
40| 5 | —2.854 —2.342 —-1.914 -1453 -0.006 1.448 1.907 2.328 2.836
40| 6 | —2.951 —2.415 —-1.972 —-1490 -0.006 1.485 1.958 2.399 2.946
40| 7 | =3.069 —2489 —-2.028 —-1.525 —0.006 1.521 2.013 2475 3.058
40| 8 | —3.184 —2.564 —-2.085 —-1.564 —0.006 1.557 2.063 2.551 3.173
401 9 | -3.291 —-2.644 —-2.140 -1.601 —-0.006 1.596 2.120 2.630 3.283
40 | 10 | =3.400 —-2.715 -—-2.195 -1.639 -—0.007 1.631 2.177 2.707 3.402
40 | 11 | —=3.520 —2.806 —2.249 -1.678 —0.007 1.667 2.232 2.787 3.505
40 | 12 | =3.635 —2.879 —-2.310 -1.716 —0.007 1.708 2.289 2873 3.619
40 | 13 | =3.728 —2.960 —-2.368 —1.755 —0.007 1.747 2339 2955 3.716
40 | 14 | —3.848 —-3.037 —2.423 -1.794 -0.007 1.785 2399 3.035 3.828
40 | 15 | =3.970 —-3.111 —2.481 -1.832 -0.007 1.824 2456 3.114 3.929
40 | 20 | —4.486 —3.494 —-2.773 —-2.029 -0.008 2.018 2.747 3.481 4.447
40 | 25 | —4.953 -—3.840 —-3.054 -—2.222 -0.009 2.210 3.014 3.838 4.913
40 | 30 | =5.373 —4.167 —-3.310 -2.413 -0.009 2.394 3.277 4.160 5.340
40 | 35 | —=5.753 —4.478 —3.557 —2.590 —0.010 2.575 3.523 4.462 5.754
40 | 40 | —6.167 —4.784 —-3.805 -—-2.768 —0.011 2.749 3.762 4.772 6.150
60 | 1 —-2410 -2.026 -1.697 -1.316 -0.006 1.309 1.686 2.025 2.416
60 | 2 | —2473 -—-2.067 -1.719 -1.334 -0.006 1.323 1.714 2.069 2.450
60| 3 | —2538 —2113 —-1.751 —1.355 —0.006 1.344 1.746 2.113 2513
60| 4 | —2.596 —2.161 —-1.784 —-1.377 —0.006 1.368 1.780 2.160 2.580
60| 5 | —2.663 —-2.209 -1.817 -—-1.399 —-0.006 1.390 1.814 2.203 2.650
60| 6 | —2734 -—-2256 —1.855 —1.421 -0.006 1.413 1.850 2.255 2.722
60| 7 | —-2806 —2.304 —-1.890 —-1.441 -0.006 1.435 1.882 2.309 2.792
60 | 8 | —-2876 —2.353 —1.927 —-1.465 -—0.006 1.458 1.920 2.348 2.857
60 | 9 | —2943 —-2407 -1.965 —1.483 —0.006 1.483 1.953 2391 2.928
60 | 10 | —3.017 —2.456 —2.005 -—1.513 —0.006 1.507 1.992 2.441 3.011
60 | 11 | —3.094 —-2.506 —2.039 —-1.536 —0.007 1.532 2.029 2495 3.083
60 | 12 | —=3.171 —2.555 —2.078 —1.560 —0.007 1.555 2.062 2.548 3.166
60 | 13 | —3.248 —2.612 —-2.114 —-1.585 —0.007 1.581 2.101 2.595 3.242
60 | 14 | —=3.333 —-2.660 —2.154 -—-1.611 —0.007 1.605 2.139 2.653 3.314
60 | 15 | =3.403 —-2.707 —-2.189 -1.638 —0.007 1.630 2.178 2.700 3.386
60 | 20 | =3.770 —2.963 —-2.379 -—-1.765 —0.007 1.759 2.363 2975 3.740
60 | 25 | —4.155 —3.229 —2.570 —-1.897 —0.007 1.884 2.555 3.234 4.105
60 | 30 | —4.481 —-3.491 —-2.776 —2.026 —0.008 2.015 2.748 3.467 4.447
60 | 35 | —4.791 —-3.714 —-2.957 —-2.155 —0.008 2.144 2931 3.703 4.767
60 | 40 | —5.080 —3.943 —3.137 -—2.288 —0.009 2.270 3.098 3.927 5.037
60 | 45 | —=5.357 —4.164 —-3.308 —-2.412 —-0.009 2.391 3.271 4.147 5.324
60 | 50 | —5.613 —4.363 —3.468 —-2.531 —-0.010 2.517 3.441 4.351 5.590
60 | 55 | —5.883 —4.565 —3.636 —2.653 —0.010 2.634 3.601 4.558 5.857
60 | 60 | —6.136 —4.771 —3.798 —-2.772 —-0.011 2.749 3.760 4.765 6.118
80| 1 —-2.386 —2.009 -1.684 -1.313 -0.006 1.299 1.678 2.014 2.397
80 | 2 | —2437 -2.042 -1.7056 -1.325 —0.006 1.314 1.698 2.049 2.428
80| 3 | —2472 2077 -1.725 -1.338 -0.006 1.327 1.723 2.079 2.467
80| 4 | —2520 -2.106 —-1.750 —1.354 —0.006 1.342 1.748 2.117 2.515
80| 5 | —2.567 -—-2.146 —-1.776 —-1.372 -0.006 1.359 1.773 2.145 2.560
80| 6 | —2621 -2.179 -—-1.800 -1.390 -0.006 1.378 1.796 2.184 2.613
80| 7 | —2.670 -2.215 -1.824 -1.406 -0.006 1.396 1.821 2218 2.670
80| 8 | —2.731 —-2.255 —1.854 —1421 -0.006 1.412 1.848 2.256 2.729
80| 9 | —2.78 —2.294 -—-1.881 -—-1.437 -0.006 1.430 1.873 2290 2.777
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Fixed-G, large-ng Asymptotic Critical Values (Cont’d)

G | Mg 1% 2.5% 5% 10% 50%  90%  95% 97.5%  99%
80 | 10 | —2.836 —2.330 —-1.907 —-1.454 —0.006 1.448 1.898 2.327 2.831
80 | 11 | —2.893 —-2.366 —1.934 —-1.471 —-0.006 1.465 1.922 2.360 2.878
80 | 12 | —2.939 —-2.403 -1.960 —1.487 —0.006 1.482 1.953 2.390 2.935
80 | 13 | —2.991 —2.443 -1.989 —-1.507 —0.006 1.502 1.980 2.428 2.998
80 | 14 | —3.040 —2.483 —-2.020 -1.524 —0.006 1.518 2.006 2.467 3.055
80 | 15 | =3.1056 —2.517 —2.047 -—1.542 —0.007 1.536 2.035 2.504 3.110
80 | 20 | —=3.394 —-2.709 —-2.189 -—-1.638 —0.007 1.628 2.174 2.700 3.391
80 | 25 | —=3.674 —2.904 —-2.332 -1.733 —-0.007 1.729 2306 2.904 3.658
80 | 30 | —3.943 —-3.095 —-2474 —-1.830 —0.007 1.822 2456 3.103 3.939
80 | 35 | —4.204 —-3.297 -—-2.621 —-1.927 —0.008 1.922 2.600 3.293 4.178
80 | 40 | —4.485 —3.490 -—-2.776 —2.025 —0.008 2.016 2.742 3.476 4.443
80 | 45 | —4.714 -3.661 —-2.912 -2.125 —0.008 2.110 2.882 3.652 4.681
80 | 50 | —4.929 —-3.833 -—-3.043 -—-2.222 —-0.009 2.206 3.011 3.823 4.901
80 | 55 | =5.140 —3.997 -—-3.18 —2.317 —0.009 2.299 3.143 3.989 5.130
80 | 60 | —5.342 —4.168 —-3.307 —2.409 —-0.009 2.390 3.269 4.148 5.323
80 | 65 | —5.544 —4.320 —-3.425 -—-2.500 —0.010 2.485 3.390 4.296 5.523
80 | 70 | =5.753 —4.464 —-3.554 —-2.591 —0.010 2.571 3.515 4.452 5.732
80 | 75 | —=5.940 —4.618 —-3.673 —2.679 —0.010 2.658 3.638 4.614 5.954
80 | 80 | —6.131 —4.766 —-3.795 —2.768 —0.010 2.748 3.757 4.763 6.148
120 | 1 | =2.362 —-1.996 —-1.675 —1.304 -—-0.006 1.293 1.667 2.004 2.367
120 2 | —-2.392 -2.012 -1.685 -—1.312 -—0.006 1.301 1.678 2.020 2.398
120 | 3 | —2.426 -2.038 -1.702 -1.321 -—0.006 1.311 1.693 2.044 2.419
120 | 4 | —2.457 -2.058 -1.715 —-1.331 -0.006 1.319 1.710 2.063 2.449
120 5 | —2.491 -2.086 —-1.733 —1.343 -—0.006 1.332 1.729 2.087 2.475
120 6 | —2.518 —-2.108 —1.749 —-1.354 -—0.006 1.343 1.746 2.113 2.502
120 | 7 | —2.554 —-2.135 -1.764 —-1.365 —0.006 1.354 1.765 2.133 2.536
120 | 8 | —2.587 —-2.156 —1.783 —1.378 —0.006 1.367 1.780 2.155 2.572
120 9 | —2.622 -2.179 -1.798 -1.389 -—0.006 1.379 1.793 2.177 2.606
120 | 10 | —2.653 —-2.204 -1.818 -1.399 -—0.006 1.390 1.810 2.199 2.643
120 | 11 | —2.693 -—-2.227 -1.834 -—-1.411 -0.006 1.401 1.829 2.226 2.680
120 | 12 | —2.730 —-2.254 —-1.853 —1.420 -0.006 1.411 1.847 2.251 2.713
120 | 13 | —2.767 —-2.277 —-1.873 -—1.429 -0.006 1.424 1.865 2.276 2.752
120 | 14 | —2.797 -2.304 —-1.889 —1.441 -—0.006 1.435 1.880 2.296 2.790
120 | 15 | —2.836 —2.327 -—1.908 -—1.452 -—0.006 1.447 1.901 2.323 2.827
120 | 20 | —3.011 —-2.456 -2.002 -1.511 -—0.006 1.507 1.991 2.440 3.012
120 | 25 | =3.199 —2.579 -—2.097 —-1.571 —0.007 1.567 2.082 2.565 3.202
120 | 30 | —=3.395 —-2.706 —2.190 -1.638 —0.007 1.628 2.175 2.701 3.378
120 | 35 | —3.585 —2.836 —2.283 —-1.701 —0.007 1.694 2.266 2.834 3.559
120 | 40 | —=3.764 —-2.961 —-2.379 —-1.765 —0.007 1.758 2.357 2.970 3.735
120 | 45 | —3.951 —-3.098 —2.475 —-1.831 —0.007 1.823 2.452 3.101 3.911
120 | 50 | —4.142 —-3.224 —-2.569 —1.895 —0.007 1.887 2.550 3.224 4.096
120 | 55 | —4.307 —3.358 —2.671 —1.961 —0.008 1.953 2.648 3.344 4.266
120 | 60 | —4.471 —-3.493 -—-2.772 —-2.026 —0.008 2.016 2.740 3.471 4.427
120 | 65 | —4.617 —3.599 —-2.862 —2.092 —-0.008 2.079 2.835 3.595 4.597
120 | 70 | —4.790 —-3.720 —-2.952 —2.158 —0.008 2.142 2.923 3.709 4.743
120 | 75 | —4.934 —-3.835 -—-3.044 -—2.222 —0.009 2.208 3.008 3.830 4.899
120 | 80 | —5.090 —-3.944 —-3.132 -—-2.286 —0.009 2.268 3.097 3.929 5.043
120 | 85 | —5.224 —4.052 —-3.227 -—2.349 -—-0.009 2.327 3.181 4.035 5.193
120 | 90 | —5.353 —4.164 —-3.308 —2.409 —-0.009 2.390 3.266 4.141 5.328
120 | 95 | —5.480 —4.268 —-3.387 —2.470 —-0.010 2.452 3.358 4.248 5.441
120 | 100 | —5.599 —4.355 —3.465 —2.531 —0.010 2.512 3.438 4.343 5.575
120 | 105 | =5.741 —4.461 —-3.550 —2.593 —0.010 2.571 3.518 4.457 5.722
120 | 110 | =5.871 —4.568 —-3.631 —2.651 —0.010 2.629 3.600 4.562 5.866
120 | 115 | —6.006 —4.665 —3.709 —-2.709 —0.010 2.687 3.679 4.664 5.996
120 | 120 | —6.131 —4.765 —-3.789 —-2.769 —0.010 2.743 3.760 4.768 6.127

43



