
Supplemental Appendix

We state primitive conditions that are sufficient for fixed-b asymptotic theory in Section 3.1 and the asymptotic
validity of the bootstrap in Section 4 with proofs for the random missing process case. For the non-random miss-
ing process case, primitive conditions are made about the latent process. Hence the results of Gonçalves and
Vogelsang (2011) directly apply and no proof is required.

We derive results under the assumption that the latent processes is near epoch dependent (NED) on an un-
derlying mixing process similar to Gonçalves and Vogelsang (2011) and that the missing process is strong mixing.
We follow the definitions in Davidson (2002). Let the Lp norm of x be defined as ‖x‖p = (E|x|p)1/p. Also, let
| • | denote the Euclidean norm of the corresponding vector or matrix. For a stochastic sequence {εt}∞

−∞, on
a probability space (Ω,F , P), let F t+m

t−m = σ(εt−m, . . . , εt+m), such that {F t+m
t−m }∞

m=0 is an increasing sequence of
σ-fields. We say that a sequence of integrable random variables {wt}∞

−∞ is Lp−NED on {εt}∞
−∞ if, for p > 0,

‖wt − E(wt|F t+m
t−m )‖p < dtνm, where νm → 0 and {dt}∞

−∞ is a sequence of positive constants. For a sequence
{at}∞

−∞, let F t
−∞ = σ(. . . , at−1, at), and similarly define F∞

t+m = σ(at+m, at+m+1, . . . ). The sequence is said to be
α−mixing if limm→∞ αm = 0, where αm = supt supG∈F t

−∞ ,H∈F∞
t+m
|P(G ∩ H)− P(G)P(H)|. A sequence is α−mixing

of size −ψ0 if αm = O(m−ψ) for some ψ > ψ0. Similarly, a sequence is Lp-NED of size −φ0 if νm = O(m−φ) for
some φ > φ0.

We first state the primitive conditions that are sufficient for fixed-b asymptotic theory when the missing pro-
cess is random and the AM approach is used (Lemma SA1). Recall that Assumption R is sufficient for fixed-b
asymptotic theory to go through when the missing process is random and the AM approach is used (Section 3.1).

Assumption R.

1. T−1
[rT]
∑

t=1
xtx′t ⇒ rQ, ∀r ∈ [0, 1] .

2. T−1/2
[rT]
∑

t=1
vt ⇒ ΛWk (r) , ∀r ∈ [0, 1] .

The following Assumption R′ is sufficient for Assumption R.

Assumption R′.

1. For some r > 2, ‖x∗t ‖2r ≤ ∆ < ∞ for all t = 1, . . . .

2. {x∗t } is a weakly stationary sequence L2−NED on {εt} with NED coefficient of size− 2(r−1)
r−2 .

3. ‖v∗t ‖r ≤ ∆ < ∞, and E(v∗t ) = 0 for all t = 1, 2, . . . .

4. {v∗t } is a mean zero weakly stationary sequence L2-NED on {εt} with NED coefficient of size− 1
2 .

5. {(at, εt)} is a α−mixing sequence with α−mixing coefficient of size− 2r
r−2 .

6. {at} is a weakly stationary process that is independent of {(x∗t , u∗t )}.

7. Ω = limT→∞ Var
(

T−1/2 ∑T
t=1 atv∗t

)
is positive definite.

Lemma SA1. Assumption R′ is sufficient for Assumption R.

Proof: Gonçalves and Vogelsang (2011, Assumption 1) is sufficient for Assumption R and we show that As-
sumption R′ is sufficient for Assumption R by showing that when Assumption R′ is satisfied the AM series satisfy
Gonçalves and Vogelsang (2011, Assumption 1).

Define εt = (at, εt). With Assumption R′, the AM series satisfy the following conditions (Gonçalves and Vogel-
sang (2011, Assumption 1)):

1. For some r > 2, ‖xt‖2r ≤ ∆ < ∞ for all t = 1, 2, . . . .
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2. {xt} is a weakly stationary sequence L2-NED on {εt} with NED coefficients of size− 2(r−1)
r−2 .

3. ‖vt‖r ≤ ∆ < ∞, and E(vt) = 0 for all t = 1, 2, . . . .

4. {vt} is a weakly stationary sequence L2-NED on {εt} with NED coefficients of size− 1
2 .

5. {εt} is an α−mixing sequence of size− 2r
r−2 .

6. Ω = limT→∞Var
(

T−1/2 ∑T
t=1 vt

)
is positive definite.

1: Note that

‖xt‖2r = ‖atx∗t ‖2r ≤ ‖x∗t ‖2r ≤ ∆ < ∞, t = 1, . . . , r > 2.

The first inequality follows form the fact that {at} is a binary sequence. The second inequality is Assumption
R′1.

2: Because {at} and {x∗t } are weakly stationary, {xt} is also weakly stationary. To show that {xt} is L2-NED, we
first define the following notation. LetF t

s = σ (εs, εs+1, . . . , εt) and G t
s = σ (εs, εs+1, . . . , εt). Note that we can

write ∥∥atx∗t − E(atx∗t |F t+m
t−m )

∥∥
p =

∥∥at
(
x∗t − E(x∗t |F t+m

t−m )
)∥∥

p

≤
∥∥(x∗t − E(x∗t |F t+m

t−m )
)∥∥

p

≤ 2
∥∥(x∗t − E(x∗t |G t+m

t−m )
)∥∥

p

≤ 2dtνm.

The first equality follows from the fact that {at} is F t+m
t−m measurable. The first inequality is straightforward

because {at} is a binary sequence. The second inequality uses Davidson (2002, 10.28, p157). The last in-
equality uses the fact that {x∗t } is L2−NED on {εt} with NED coefficient of size−2(r− 1)/(r− 2) (Assump-
tion R′2). Therefore we have ∥∥atx∗t − E(atx∗t |F t+m

t−m )
∥∥

p ≤ d′tνm, d′t = 2dt,

where νm is of size−2(r− 1)/(r− 2).

3: Note that we can write

‖vt‖r = ‖atv∗t ‖r ≤ ‖v∗t ‖r ≤ ∆ < ∞, r > 2.

The first inequality uses the fact that {at} is a binary sequence. The second inequality is Assumption R′3.

4: The proof of the fourth condition is identical to that of the second condition. we can write∥∥atv∗t − E(atv∗t |F t+m
t−m )

∥∥
p =

∥∥at
(
v∗t − E(v∗t |F t+m

t−m )
)∥∥

p

≤
∥∥(v∗t − E(v∗t |F t+m

t−m )
)∥∥

p

≤ 2
∥∥(v∗t − E(v∗t |G t+m

t−m )
)∥∥

p

≤ 2dtνm.

The first equality follows from the fact that {at} is F t+m
t−m measurable. The first inequality is straightforward

because {at} is a binary sequence. The second inequality uses Davidson (2002, 10.28, p157). The last in-
equality uses the fact that {v∗t } is L2−NED on {εt} with NED coefficient of size −1/2 (Assumption R′4).
Therefore we have ∥∥atv∗t − E(atv∗t |F t+m

t−m )
∥∥

p ≤ d′tνm, d′t = 2dt,

where νm is of size−1/2.
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5: The fifth condition is identical to Assumption R′5.

6: The sixth condition is identical to Assumption R′7.

Next, we prove that when the missing process is random and Assumption R′ with Assumption R′ 3-5 strength-
ened to Assumption R′′ 3-5 is satisfied, the moving block bootstrap (MBB) HAR Wald test, W•T, defined in Section
4 has the usual fixed-b limit in Kiefer and Vogelsang (2005). This result is stated in Theorem SA1.

Assumption R′′.

3. ‖v∗t ‖r+δ < ∞, r > 2.

4. {v∗t } is a weakly stationary L2+δ−NED on {εt} with νm of size−1.

5. {(at, εt)} is a α−mixing sequence with αm of size− (2+δ)(r+δ)
r−2 .

Theorem SA1. Let W•T and t•T be naive bootstrap test statistics obtained from the moving block bootstrap resamples
as defined in Section 4. Suppose that the block size l is either fixed as T → ∞ or l → ∞ as T → ∞ such that l2/T → 0.
Let b ∈ (0, 1] be fixed and suppose M = bT. Then, under Assumption R′ with Assumption R′3-5 strengthened to
Assumption R′′3-5, as T → ∞,

W•T
p•⇒W ′q(1)P(b, B̃q)

−1Wq(1)

and

t•T
p•⇒ W1(1)√

P(b, B̃1)
.

For the proof of Theorem SA1, we start by three lemmas (Lemmas SA2-SA4) which are the building blocks
for proving the required weak dependence of the functions of AM series - {xtx′t}, {vt}, {vtv′t+j} (Results 1-3).
With these required weak dependence results of the functions of AM series, we prove three lemmas (Lemmas
SA5-SA7). These lemmas in turn would be used to prove that Assumption R′ with Assumption R′ 3-5 strength-

ened to Assumption R′′ 3-5 is sufficient for conditions (a) and (b) in Section 4, (a) T−1 ∑
[rT]
t=1 x•t x•′t

p•⇒ rQ• and (b)

T−1/2 ∑
[rT]
t=1 v•t

p•⇒ Λ•Wk(r), which completes the proof of Theorem SA1.

Lemma SA2 shows that under Assumption R′ the mean zero AM series are mixingales (see, e.g., Davidson
(2002, p247) for a definition of mixingale). Lemma SA3 and Lemma SA4 show properties of NED and mixingale
sequence. With these three lemmas we show in Results 1-3 that the functions of AM series - {xtx′t}, {vt}, {vtv′t+j}
- satisfy the required weak dependence conditions.

Lemma SA2. Let r ≥ p ≥ 1. Suppose ‖wt‖r ≤ ∆ < ∞. Let {at} be a random sequence which takes values either 0
or 1. If {(at, εt)} is a α−mixing sequence with αm of size −a and {wt} is Lp−NED on {εt} with νm of size −b, then
{atwt − E(atwt),F t} is Lp−mixingale of size −min{b, a r−2

2r } with uniformly bounded mixingale constants where
F t is a nondecreasing sequence of σ-fields, σ (Xt, Xt−1, . . . ), Xt = (at, εt).

Proof: We start by defining the following notation. Let Xt = (at, εt),F t
s = σ (Xs, Xs+1, . . . , Xt), G t

s = σ (εs, εs+1, . . . , εt).
Proving that {atwt − E(atwt)} is Lp−mixingale is equivalent to proving∥∥E

[
atwt − E(atwt)|F t−m

−∞
]∥∥

p ≤ ctψm (SA.1)∥∥atwt − E(atwt)− E
[
atwt − E(atwt)|F t+m

−∞
]∥∥

p ≤ ctψm+1. (SA.2)

Proof of (SA.1): Let m ≥ 1 and let k =
[m

2
]

be the largest integer not exceeding m
2 . By the Minkowski inequality

(Davidson (2002, 9.27, p139)) we can rewrite (SA.1) as
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∥∥E
[
atwt − E(atwt)|F t−m

−∞
]∥∥

p

=
∥∥∥E
[

atwt − atE
[
wt|G t+k

t−k

]
+ atE

[
wt|G t+k

t−k

]
− E

(
atE

[
wt|G t+k

t−k

])
+ E

(
atE

[
wt|G t+k

t−k

])
− E(atwt)

∣∣∣F t−m
−∞

]∥∥∥
p

≤
∥∥∥E
[

at

(
wt − E

[
wt|G t+k

t−k

])∣∣∣F t−m
−∞

]∥∥∥
p
+
∥∥∥E
[

atE
[
wt|G t+k

t−k

]
− E

(
atE

[
wt|G t+k

t−k

])∣∣∣F t−m
−∞

]∥∥∥
p

+
∥∥∥E
(

at

(
E
[
wt|G t+k

t−k

]
− wt

))∥∥∥
p

≡Π1 + Π2 + Π3.

We can bound each of the three terms as follows. Π1 can be rewritten as

Π1 ≤
∥∥∥at

(
wt − E

[
wt|G t+k

t−k

])∥∥∥
p

≤
∥∥∥wt − E

[
wt|G t+k

t−k

]∥∥∥
p

≤ dtνk.

The first inequality uses the conditional Jensen’s inequality and law of iterated expectations. The second inequal-
ity is straightforward because at is a binary process. Third inequality is using the fact that wt is Lp−NED on {εt}
with NED coefficient νm.

Next we bound Π2. Note that E
[
wt|G t+k

t−k

]
is a finite-lag measurable function of εt−k, . . . , εt+k for finite k. Be-

cause {(at, εt)} is an α−mixing sequence with αm of size −a, E
[
wt|G t+k

t−k

]
is α−mixing of size −a. This in turn

implies that atE
[
wt|G t+k

t−k

]
is α−mixing of size −a (see Davidson (2002, Theorem 14.1, p210)). Then, using a mix-

ing inequality (Davidson (2002, Theorem 14.2, p211)), we can write

Π2 ≤ 2
(

2
1
p + 1

)
α

1
p−

1
r

k

∥∥∥atE
[
wt|G t+k

t−k

]∥∥∥
r

≤ 6α
1
p−

1
r

k

∥∥∥atE
[
wt|G t+k

t−k

]∥∥∥
r

≤ 6α
1
p−

1
r

k

∥∥∥E
[
wt|G t+k

t−k

]∥∥∥
r

≤ 6α
1
p−

1
r

k ‖wt‖r .

The second and the third inequalities are straightforward by noting that p ≥ 1 and at is a binary process. The last
inequality follows from the conditional Jensen’s inequality and law of iterated expectations.

Finally, we bound Π3. Π3 can be rewritten as

Π3 =
∣∣∣E (at

(
E
[
wt|G t+k

t−k

]
− wt

))∣∣∣
≤
∥∥∥at

(
E
[
wt|G t+k

t−k

]
− wt

)∥∥∥
1

≤
∥∥∥E
[
wt|G t+k

t−k

]
− wt

∥∥∥
1

≤
∥∥∥wt − E

[
wt|G t+k

t−k

]∥∥∥
P

≤ dtνk.

The first inequality uses Jensen’s inequality. Because at is a binary process the second inequality is straightfor-
ward. Because p ≥ 1, by Liapunov’s inequality (Davidson (2002, 9.23, p138)), the third inequality is also straight-
forward. The last inequality follows from the fact that wt is Lp−NED on {εt} with NED coefficient νm. Hence

4



combining the inequality results for all three terms, we have∥∥E
[
atwt − E(atwt)|F t−m

−∞
]∥∥

p ≤ A11 + A12 + A13

≤ 2dtνk + 6α
1
p−

1
r

k ‖wt‖r

≤ max {dt, ‖wt‖r}
(

2νk + 6α
1
p−

1
r

k

)
≡ ctψm.

Proof of (SA.2): We can rewrite (SA.2) as∥∥(atwt − E(atwt))− E
[

atwt − E(atwt)| F t+m
−∞

]∥∥
p =

∥∥atwt − E
[

atwt| F t+m
−∞

]∥∥
p

≤ 2
∥∥atwt − E

[
atwt| F t+m

t−m
]∥∥

p

= 2
∥∥atwt − atE

[
wt| F t+m

t−m
]∥∥

p ∵ at is F t+m
t−m −measurable

≤ 2
∥∥wt − E

[
wt| F t+m

t−m
]∥∥

p

≤ 2dtνm ≤ 2dtν[m+1
2 ] ≤ ctψm+1.

The first inequality follows from Davidson (2002, 10.28, p157). The second inequality is straightforward because at
is a binary process. The third inequality is using the fact that wt is Lp−NED on {εt} with NED coefficient νm. The
fourth inequality is straightforward because without loss of generality we can consider {νm}∞

m=1 as a decreasing
sequence. Recall that νm is of size−b and αm is of size−a. Therefore {atwt − E(atwt)} is Lp−mixingale with ψm of

size−min
{

b, a r−p
pr

}
with ct << max {dt, ‖wt‖r}.

Now we are only left with proving that the mixingale constants are uniformly bounded. According to the
Minkowski inequality (Davidson (2002, 9.27, p139)) and conditional Jensen’s inequality,∥∥wt − E

[
wt|G t+m

t−m
]∥∥

p ≤ ‖wt‖p +
∥∥∥E
[
wt|G t+k

t−k

]∥∥∥
p

≤ ‖wt‖p + ‖wt‖p

= 2 ‖wt‖p .

Since ‖wt‖p ≤ ‖wt‖r by the norm inequality (Davidson (2002, 9.23, p138))) and ‖wt‖r is uniformly bounded, we

can set dt equal to a finite constant for all t. Thus, mixingale constant, ct << max {dt, ‖wt‖r} ≤ max
{

2 ‖wt‖p , ‖wt‖r

}
,

is uniformly bounded.

Lemma SA3. Let xt and wt be Lp-NED on {εt} with νx
m and νw

m of respective sizes −φx and −φw. Then xtwt is
Lp/2-NED of size−min{φx, φw}.

Proof: We follow the proof of Davidson (2002, Theorem 17.9, p268). Define F t
s = σ (εs, εs+1, . . . , εt). By the

Minkowski inequality (Davidson (2002, 9.27, p139)), we can write∥∥xtwt − E
[

xtwt| F t+m
t−m

]∥∥ p
2
=
∥∥xtwt − xtE

[
wt| F t+m

t−m
]
+ xtE

[
wt| F t+m

t−m
]
− E

[
xt| F t+m

t−m
]

E
[

wt| F t+m
t−m

]
+E

[
xt| F t+m

t−m
]

E
[

wt| F t+m
t−m

]
− E

[
xtwt| F t+m

t−m
]∥∥ p

2

≤
∥∥xtwt − xtE

[
wt| F t+m

t−m
]∥∥ p

2
+
∥∥xtE

[
wt| F t+m

t−m
]
− E

[
xt| F t+m

t−m
]

E
[

wt| F t+m
t−m

]∥∥ p
2

+
∥∥E
[

xt| F t+m
t−m

]
E
[

wt| F t+m
t−m

]
− E

[
xtwt| F t+m

t−m
]∥∥ p

2

≡ Π1 + Π2 + Π3.

First consider Π1. By Hölder’s inequality (Davidson (2002, 9.21, p138)) we can write

Π1 =
∥∥xt

(
wt − E

[
wt| F t+m

t−m
])∥∥ p

2
≤ ‖xt‖p

∥∥wt − E
[

wt| F t+m
t−m

]∥∥
p

≤ ‖xt‖p dw
t νw

m.
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The second inequality is straightforward because wt is Lp−NED with NED coefficient νw
m.

Next we consider Π2. By Hölder’s inequality (Davidson (2002, 9.21, p138)), the conditional Jensen’s inequality,
and the law of iterated expectations, we can write

Π2 =
∥∥(xt − E

[
xt| F t+m

t−m
])

E
[

wt| F t+m
t−m

]∥∥ p
2
≤
∥∥xt − E

[
xt| F t+m

t−m
]∥∥

p ‖wt‖p

≤ dx
t νx

m ‖wt‖p .

The second inequality is straightforward because xt is Lp−NED with NED coefficient νx
m.

For Π3, using the conditional Jensen’s inequality we can write

Π3 =
∥∥E
[ (

xt − E
[

xt| F t+m
t−m

]) (
wt − E

[
wt| F t+m

t−m
])∣∣F t+m

t−m
]∥∥ p

2
≤
∥∥(xt − E

[
xt| F t+m

t−m
]) (

wt − E
[

wt| F t+m
t−m

])∥∥ p
2

≤
∥∥xt − E

[
xt| F t+m

t−m
]∥∥

p

∥∥wt − E
[

wt| F t+m
t−m

]∥∥
p

≤ dx
t νx

mdw
t νw

m.

The second inequality uses Hölder’s inequality (Davidson (2002, 9.21, p138)). The third inequality follows from
the fact that both xt and wt are Lp−NED on {εt}. Combining the three inequality results for Π1, Π2, and Π3,∥∥xtwt − E

[
xtwt| F t+m

t−m
]∥∥ p

2
≤ ‖xt‖p dw

t νw
m + dx

t νx
m ‖wt‖p + dx

t νx
mdw

t νw
m

≤ max
{
‖xt‖p dw

t , ‖wt‖p dx
t , dx

t dw
t

}
(νw

m + νx
m + νx

mνw
m) ≡ dtνm.

In other words, xtwt is Lp/2−NED on {εt} with NED coefficients νm = νw
m + νx

m + νx
mνw

m. This completes the proof

because νm = O
(

m−min{φx ,φw}
)

.

Lemma SA4. For some nondecreasing sequence of σ-fields {F t} and for some p > 1, let
{

wt,F t} be an Lp−mixingale

with mixingale coefficients ψm and mixingale constants ct. Then letting Sj = ∑
j
t=1 wt and Ψ = ∑∞

m=1 ψm, it follows
that ∥∥∥∥max

j≤T

∣∣Sj
∣∣∥∥∥∥

p
≤ KΨ

(
T

∑
t=1

cβ
t

) 1
β

, β = min {p, 2}

for some generic constant K.

Proof: See Hansen (1991), Hansen (1992).

Result 1. Under Assumption R′, {xtx′t − E (xtx′t)} is L2−mixingale of size −1 with uniformly bounded mixingale
constants.

Proof: First, we can show that under Assumption R′, {x∗t x∗′t } is L2−NED on {εt} of size −1 (see Davidson
(2002, Example 17.17, p273)). Also note that ‖x∗t x∗′t ‖r ≤ ∆ < ∞ by Assumption R′1 and Hölder’s inequal-
ity (Davidson (2002, 9.21, p138)). Therefore using Lemma SA2, {atx∗′t x∗′t − E (atx∗′t x∗′t )} is L2−mixingale of size
−min {1, (2r/(r− 2))× ((r− 2)/2r)}with uniformly bounded mixingale constants. In other words, {xtx′t−E (xtx′t)}
is L2−mixingale of size−1 with uniformly bounded mixingale constants.

Result 2. Under Assumption R′′, vt is L2+δ−mixingale of size−1 with uniformly bounded mixingale constants.

Proof: Using Lemma SA2, atv∗t − E(atv∗t ) is L2+δ−mixingale of size −min{1, ((2 + δ)(r + δ)/(r − 2)) × ((r −
2)/2r)} = −min{1, (2+ δ)(r + δ)/2r} = −1 with uniformly bounded mixingale constants. Note that E(atv∗t ) = 0.
Hence atv∗t is L2+δ−mixingale of size −1. In other words, vt is L2+δ-mixingale of size −1 with uniformly bounded
mixingale constants.
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Result 3. Under Assumption R′′,
{

vtv′t+j − E
(

vtv′t+j

)}
is L(2 + δ)/2−mixingale of size −1 with uniformly bounded

mixingale constants.

Proof: Note that under Assumption R′′4, {v∗t } is L2+δ−NED on {εt} of size −1, which implies that {v∗t+j} is

L2+δ−NED on {εt} of size−1 as well (see Davidson (2002, Theorem 17.10, p268)). Then
{

v∗t v∗′t+j

}
is L(2 + δ)/2−NED

on {εt} of size−1 by Lemma SA3. Also note that under Assumption R′′5, {(at, εt)} is α-mixing of size−(2 + δ)(r + δ)/(r− 2)

which implies that the binary process atat+j is also α−mixing of the same size, −(2 + δ)(r + δ)/(r− 2). By the applica-

tion of Lemma SA2,
{

atat+jv∗t v∗′t+j − E
(

atat+jv∗t v∗′t+j

)}
is L(2+δ)/2−mixingale of size−min{1, ((2 + δ)(r + δ)/(r−

2))× ((r− 2)/2r)} = −min{1, (2 + δ)(r + δ)/2r} with uniformly bounded mixingale constants. In other words,{
vtv′t+j − E

(
vtvt+j

)}
is L(2+δ)/2−mixingale of size−1 with uniformly bounded mixingale constants.

Using Results 1-3 above, we prove Lemmas SA5-SA7. Lemma SA5 establishes a LLN for the MBB sample mean.
Lemma SA6 gives the probability limits of the MBB variance of the scaled bootstrap sample mean. Lemma SA7
establishes a FCLT for the MBB partial sum process. These will be used to prove Theorem SA1.

Our proofs and notation are similar to those of Gonçalves and Vogelsang (2011). We use the following notation.
Define the vector ωt = (yt, x′t)

′ that collects dependent and explanatory variables. Let l ∈ N(1 ≤ l ≤ T) be a block
length and let Bt,l = {ωt, ωt+1, . . . , ωt+l−1} be the block of l consecutive observations starting at ωt. Draw k0 = T/l

blocks randomly with replacement from the set of overlapping blocks {B1,l , . . . , BT−l+1,l} to obtain a bootstrap
resample denoted as ω•t = (y•t , x•′t )′, t = 1, . . . , T. Given MBB resample ω•t = (y•t , x•′t )′, we let v•0t = x•t (y

•
t −

x•′t β) ≡ x•t u•0t and v•t = x•t (y
•
t − x•′t β̂) ≡ x•t u•t . p• denotes the probability measure induced by the bootstrap

resampling, conditional on a realization of the original time series. Let Z•T be bootstrap statistics. Then, we write

Z•T = op•(1) in probability or Z•T
p•→ 0 if for any ε > 0, δ > 0, limT→∞ p[p•(|Z•T | > δ) > ε] = 0. Similarly we say

that Z•T = Op•(1) in probability if for all ε > 0 there exists an Mε < ∞ such that limT→∞ p[p•(|Z•T | > Mε) > ε] = 0.

Finally, we write Z•T
p•⇒ Z in probability if conditional on the sample, Z•T weakly converges to Z under p•, for all

samples contained in a set with probability converging to one. Specifically, we write Z•T
p•⇒ Z in probability if and

only if E•[ f (Z•T)]→ E[ f (Z)] in probability for any bounded and uniformly continuous function f .

Lemma SA5. Suppose that {wt − E(wt)} is a weakly stationary L2−mixingale with ‖wt‖p ≤ ∆ < ∞ for some p > 2
such that its mixingale coefficients ψm satisfy ∑∞

m=1 ψm < ∞ and its mixingale constants are uniformly bounded.
Let {w•t : t = 1, . . . , T} denote an moving block bootstrap resample of {wt : t = 1, . . . , T} with block size l satisfying
either of the two following conditions: (a) l is fixed as T → ∞, or (b) l → ∞ as T → ∞ with l = o(T). Then, for any
η > 0, as T → ∞,

p•
(

sup
r∈[0,1]

∣∣∣∣∣T−1
[rT]

∑
t=1

(w•t − E• (w•t ))

∣∣∣∣∣ > η

)
= op(1).

Proof: We follow Gonçalves and Vogelsang (2011, Proof of Lemma A.4). Note that we can write

1
T

[rT]

∑
t=1

(w•t − E• (w•t )) =
1
T

Mr

∑
m=1

B

∑
s=1

(wIm+s − E• (wIm+s)) ,

where Mr = [([rT]− 1)/l] + 1 and B = min{l, [rT]− (m− 1)l}. Note that I1, . . . , Ik0 are i.i.d. uniformly distributed
on {0, . . . , T − l} and for r ∈ [0, 1], Mr ∈ {1, . . . , k0} and B ∈ {1, . . . , l}. We can further write

1
T

Mr

∑
m=1

B

∑
s=1

(wIm+s − E• (wIm+s)) =
1
T

Mr

∑
m=1

l

∑
s=1

(wIm+s − E• (wIm+s))−
1
T

l

∑
s=BMR+1

(
wIMr+s − E•

(
wIMr+s

))
≡ Π1T(r) + Π2T(r),
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where BMr = [rT]− (Mr − 1)l. By the Markov inequality it is sufficient to show that

E•
(

sup
r∈[0,1]

|Π1T(r)|2
)

= E•

 sup
r∈[0,1]

∣∣∣∣∣ 1
T

Mr

∑
m=1

l

∑
s=1

(wIm+s − E• (wIm+s))

∣∣∣∣∣
2
 = op(1) and (SA.3)

E•
(

sup
r∈[0,1]

|Π2T(r)|
)

= E•

 sup
r∈[0,1]

∣∣∣∣∣∣ 1
T

l

∑
s=BMr+1

(
wIMr+s − E•

(
wIMr+s

))∣∣∣∣∣∣
 = op(1). (SA.4)

First we consider (SA.3). Note thatMj = ∑
j
m=1 ∑l

s=1 (wIm+s − E• (wIm+s)) is a martingale array with respect to
FT,j = σ

(
I1, . . . , Ij

)
. By Doob’s inequality (see Davidson (2002, 15.15, p241)), it follows that

E•

 sup
r∈[0,1]

∣∣∣∣∣ 1
T

Mr

∑
m=1

l

∑
s=1

(wIm+s − E• (wIm+s))

∣∣∣∣∣
2
 =

1
T2 E•

(
max

1≤j≤k0

∣∣Mj
∣∣2)

≤ 1
T2

2
2− 1

E•
(∣∣Mk0

∣∣2) =
2

T2 E•
(∣∣Mk0

∣∣2) .

We can further write as

E•
(∣∣Mk0

∣∣2) = k0E•

∣∣∣∣∣ l

∑
s=1

(
wI1+s − E•

(
wI1+s

))∣∣∣∣∣
2


= k0E•

∣∣∣∣∣ l

∑
s=1

(
wI1+s − E(wt) + E(wt)− E•

(
wI1+s

))∣∣∣∣∣
2


= k0E•

∣∣∣∣∣ l

∑
s=1

(
wI1+s − E(wt)

)
− E•

(
wI1+s − E(wt)

)∣∣∣∣∣
2


≤ 2k0E•

∣∣∣∣∣ l

∑
s=1

(
wI1+s − E(wt)

)∣∣∣∣∣
2
 .

The first equality follows from the fact that ∑l
s=1 (wIm+s − E• (wIm+s)) is a sum of independent random variables

with respect to the probability measure p• and Ij ∼ i.i.d. uniform {0, . . . , T − l}. The inequality follows immedi-
ately from Jensen’s and the triangle inequalities.

Using Lemma SA4 we can show that

E

2k0E•

∣∣∣∣∣ l

∑
s=1

(
wI1+s − E(wt)

)∣∣∣∣∣
2
 = O(T).

Hence,

E

(
E•
(

sup
r∈[0,1]

|Π1T(r)|2
))

=
1

T2 O(T) = O(T−1) = o(1). (SA.5)

By the Markov inequality (SA.5) implies (SA.3) and we are left with proving (SA.4).
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Notice that we can write

E•
(

sup
r∈[0,1]

|Π2T(r)|
)

= E•

 sup
r∈[0,1]

∣∣∣∣∣∣ 1
T

l

∑
s=BMr+1

(
wIMr+s − E•

(
wIMr+s

))∣∣∣∣∣∣


= E•

 sup
r∈[0,1]

∣∣∣∣∣∣ 1
T

l

∑
s=BMr+1

(
wIMr+s − E(wt) + E(wt)− E•

(
wIMr+s

))∣∣∣∣∣∣


= E•

 sup
r∈[0,1]

∣∣∣∣∣∣ 1
T

l

∑
s=BMr+1

(
wIMr+s − E(wt)

)
− E•

(
wIMr+s − E(wt)

)∣∣∣∣∣∣


≤ 2E•
(

sup
r∈[0,1]

∣∣∣∣∣ 1
T

l

∑
s=1

(
wIMr+s − E(wt)

)∣∣∣∣∣
)

=
1

T − l + 1

T−l

∑
j=0

sup
r∈[0,1]

∣∣∣∣∣ 1
T

l

∑
s=1

(
wj+s − E(wt)

)∣∣∣∣∣ .

The inequality follows immediately from Jensen’s and the triangle inequalities. The last equality follows from the
fact that IMr ∼ i.i.d. uniform {0, . . . , T − l}. Note that

E

 sup
r∈[0,1]

∣∣∣∣∣∣ 1
T

l

∑
s=BMr+1

(
wj+s − E(wt)

)∣∣∣∣∣∣
 ≤ 1

T
E

(
max
1≤i≤l

∣∣∣∣∣ j+l

∑
s=j+i

(
wj+s − E(wt)

)∣∣∣∣∣
)

≤ 1
T

∥∥∥∥∥max
1≤i≤l

∣∣∣∣∣ j+l

∑
s=j+i

(
wj+s − E(wt)

)∣∣∣∣∣
∥∥∥∥∥

2

.

Recall that for any r ∈ [0, 1], BMr ∈ {1, . . . , l}. Hence the first inequality follows immediately. By the norm in-
equality (Davidson (2002, 9.23, p138)), the second inequality is also straightforward. Since

{
wj+s − E(wt)

}
is

L2−mixingale, applying Lemma SA4, we can write∥∥∥∥∥max
1≤i≤l

∣∣∣∣∣ j+l

∑
s=j+i

(
wj+s − E(wt)

)∣∣∣∣∣
∥∥∥∥∥

2

≤ KΨ

(
l

∑
t=1

c2
t

)1/2

,

where {ct} are mixingale constants and Ψ = ∑∞
m=1 ψm < ∞. Since the mixingale constants are uniformly bounded,

KΨ
(

∑l
t=1 c2

t

)1/2
= O(l1/2), which implies that

E

 sup
r∈[0,1]

∣∣∣∣∣∣ 1
T

l

∑
s=BMr+1

(
wj+s − E(wt)

)∣∣∣∣∣∣
 ≤ 1

T

∥∥∥∥∥max
1≤i≤l

∣∣∣∣∣ j+l

∑
s=j+i

(
wj+s − E(wt)

)∣∣∣∣∣
∥∥∥∥∥

2

= O

(
l1/2

T

)
.

Therefore,

E

(
E•
(

sup
r∈[0,1]

|Π2T(r)|
))
≤ 1

T

∥∥∥∥∥max
1≤i≤l

∣∣∣∣∣ j+l

∑
s=j+i

(
wj+s − E(wt)

)∣∣∣∣∣
∥∥∥∥∥

2

= O

(
l1/2

T

)
= o(1). (SA.6)

Note that O
(

l1/2

T

)
= o(1) for both l fixed and l → ∞, l/T → 0. By Markov inequality (SA.6) implies (SA.4) which

completes the proof.

Lemma SA6. Let Ω•T = Var•
(

T−1/2 ∑T
t=1 v•0t

)
. Suppose that Assumption R′ is satisfied.

9



(a) For any fixed l such that 1 ≤ l < T, T → ∞,

p lim
T→∞

Ω•T = Γ0 +
l

∑
j=1

(
1− j

l

)(
Γj + Γ′j

)
≡ Ωl ,

where Γj = E
(

vtv′t−j

)
.

(b) Let l = lT → ∞ as T → ∞ such that l2/T → 0. Then,

p lim
T→∞

Ω•T = Γ0 +
∞

∑
j=1

(
Γj + Γ′j

)
≡ Ω.

Proof: From Lemma SA1, we know that Assumption R′ is sufficient for Gonçalves and Vogelsang (2011, Assump-
tion 1) which is sufficient for Gonçalves and Vogelsang (2011, Assumption A). This in turn is sufficient for proving
this lemma. See Gonçalves and Vogelsang (2011) for details.

Lemma SA7. Suppose that Assumption R′′ holds. Define Z•T = T−1/2 ∑
[rT]
T=1 (v

•
0t − E• (v•0t)). Let Ωl and Ω as defined

in Lemma SA6 be positive definite matrices. It follows that

(a) For any fixed l such that 1 ≤ l < T as T → ∞,

Z•T(r)⇒p• ΛlWk(r),

in probability where Λl is the square root matrix of Ωl .

(b) Let l = lT → ∞ as T → ∞ such that l2/T → 0. Then

Z•T(r)⇒p• ΛWk(r),

in probability where Λ is the square root matrix of Ω.

Proof: We follow the proofs in Gonçalves and Vogelsang (2011, Lemma A.3). In fact, a sufficient condition for the
proof is that vt is L2+δ−mixingale with size −1 with uniformly bounded mixing coefficients, which is implied by
Assumption R′′ (see Result 2).

We will show λ′Ω•−1/2
T T−1/2 ∑

[rT]
t=1 (v

•
0t − E•(v•0t)) ⇒p• λ′Wk(r) in probability for any λ such that λ′λ = 1. For

any r ∈ [0, 1], we can write

λ′Ω•−1/2
T T−1/2

[rT]

∑
t=1

(v•0t − E•(v•0t))

=λ′Ω•−1/2
T T−1/2

Mr

∑
m=1

B

∑
s=1

(vIm+s − E•(vIm+s))

=λ′Ω•−1/2
T T−1/2

Mr

∑
m=1

l

∑
s=1

(vIm+s − E•(vIm+s))− λ′Ω•−1/2
T T−1/2

l

∑
s=BMr+1

(
vIMr+s − E•(vIm+s)

)
≡Π1T(r)−Π2T(r),

where Mr = [([rT]− 1)/l] + 1, B = min{l, [rT]− (m− 1)l}, and BMr [rT]− (Mr − 1)l. Recall that I1, . . . , Ik0 are i.i.d.
uniformly distributed on {0, . . . , T − l} and for any r ∈ [0, 1], Mr ∈ {1, . . . , k0} and B ∈ {1, . . . , l}. We first show
that supr∈(0,1] |Π2T(r)| = Op•(k−1/2

0 ) = op•(1) in probability and then show that Π1T(r)⇒p• W1(r).

To show supr∈(0,1] |Π2T(r)| = Op•(k−1/2
0 ), it is sufficient to show E•

(
supr∈(0,1] |Π2T(r)|

)
= Op(k−1/2

0 ) by the

Markov inequality. Notice that Ω•−1/2
T = Op(1) because by Lemma SA6, plim Ω•T = Ω• and Ω• is p.d.. Therefore,
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it is sufficient to show that E•
(

supr∈(0,1]

∣∣∣T−1/2 ∑l
s=BMr+1 (vIm+s − E•(vIm+s))

∣∣∣) = Op(k−1/2
0 ). Using Jensen’s and

the triangle inequalities, it follows that

E•

 sup
r∈(0,1]

∣∣∣∣∣∣T−1/2
l

∑
s=BMr+1

(vIm+s − E•(vIm+s))

∣∣∣∣∣∣
 ≤ 2E•

 sup
r∈(0,1]

∣∣∣∣∣∣T−1/2
l

∑
s=BMr+1

vIm+s

∣∣∣∣∣∣


=
2T−1/2

T − l + 1

T−l

∑
j=0

sup
r∈(0,1]

∣∣∣∣∣∣
l

∑
s=BMr+1

vj+s

∣∣∣∣∣∣
≤ 2T−1/2

T − l + 1

T−l

∑
j=0

max
1≤i≤l

∣∣∣∣∣ j+l

∑
s=j+i

vs

∣∣∣∣∣ .

The equality is straightforward because I1, . . . , Ik0 are i.i.d. uniformly distributed on {0, . . . , T− l}. The second in-

equality is obvious because for r ∈ [0, 1], B ∈ {1, . . . , l}. Hence to show that E•
(

supr∈(0,1] |Π2T(r)|
)
= Op(k−1/2

0 ),

it is sufficient to show that E
(

k1/2
0

2T−1/2

T−l+1 ∑T−l
j=0 max1≤i≤l

∣∣∣∑j+l
s=j+i vs

∣∣∣) = O(1) by the Markov inequality. Using the

norm inequality (Davidson (2002, 9.23, p138)), we can write

E

(
k1/2

0
2T−1/2

T − l + 1

T−l

∑
j=0

max
1≤i≤l

∣∣∣∣∣ j+l

∑
s=j+i

vs

∣∣∣∣∣
)
≤ k1/2

0
2T−1/2

T − l + 1

T−l

∑
j=0

∥∥∥∥∥max
1≤i≤l

∣∣∣∣∣ j+l

∑
s=j+i

vs

∣∣∣∣∣
∥∥∥∥∥

2+δ

≤ k1/2
0

2T−1/2

T − l + 1

T−l

∑
j=0

KΨl1/2

= 2(k0l)1/2T−1/2KΨ = 2KΨ = O(1).

The second inequality follows from the fact that {vt} is a L2+δ−mixingale of size −1 with uniformly bounded
mixingale constants (see Result 2). Note that Ψ = ∑∞

m=1 ψm < ∞ because ψm, the mixingale coefficient, is of size
−1.

Next we show that Π1T(r) ⇒p• W1(r). Note that λ′Ω•−1/2
T T−1/2 ∑Mr

m=1 ∑l
s=1 (vIm+s − E•(vIm+s)) is asymptoti-

cally equivalent to λ′Ω•−1/2
T (lk0)

−1/2 ∑
[rk0]+1
m=1 ∑l

s=1 (vIm+s − E•(vIm+s)). By rearranging the terms, we can write

k−1/2
0

[rk0]+1

∑
m=1

λ′Ω•−1/2
T

(
l−1/2

l

∑
s=1

(vIm+s − E•(vIm+s))

)
≡

[rk0]+1

∑
m=1

k−1/2
0 Vm,

whereVm ≡ λ′Ω•−1/2
T

(
l−1/2 ∑l

s=1 (vIm+s − E•(vIm+s))
)

. HereVm is an array of independent variables with E•(Vm) =

0 and

Var•(Vm) = λ′Ω•−1/2
T Var•

(
l−1/2

l

∑
s=1

(vIm+s − E•(vIm+s))

)
Ω•−1/2

T λ

= λ′Ω•−1/2
T Ω•TΩ•−1/2

T λ = 1. (SA.7)

We use a FCLT for martingale difference arrays. Note that k−1/2
0 Vm is a martingale array with respect to the σ-field

FT,m−1 = σ(I1, . . . , Im−1) given the independence ofVm. First, we can show that as k0 → ∞,

Var•
(

[rk0]+1

∑
m=1

k−1/2
0 Vm

)
=

[rk0] + 1
k0

→ r. (SA.8)

This is straightforward by (SA.7) and the fact thatVm is independent. Next, we show that

p lim
k0→∞

[rk0]+1

∑
m=1

E•
∣∣∣k−1/2

0 Vm

∣∣∣2+δ
= 0. (SA.9)
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(SA.9) implies that the Lindeberg condition holds in probability. Since Ω•T = Op(1), it is sufficient to show that

E

[rk0]+1

∑
m=1

E•
∣∣∣∣∣k−1/2

0 l−1/2
l

∑
s=1

(vIm+s − E•(vIm+s))

∣∣∣∣∣
2+δ
→ 0

by the Markov inequality. Note that

E

[rk0]+1

∑
m=1

E•
∣∣∣∣∣k−1/2

0 l−1/2
l

∑
s=1

(vIm+s − E•(vIm+s))

∣∣∣∣∣
2+δ
 = T−(2+δ)/2E

[rk0]+1

∑
m=1

E•
∣∣∣∣∣ l

∑
s=1

(vIm+s − E•(vIm+s))

∣∣∣∣∣
2+δ


≤ 2T−(2+δ)/2E

[rk0]+1

∑
m=1

E•
∣∣∣∣∣ l

∑
s=1

vIm+s

∣∣∣∣∣
2+δ


=
2T−(2+δ)/2

T − l + 1

[rk0]+1

∑
m=1

T−l

∑
j=0

E

∣∣∣∣∣ l

∑
s=1

vj+s

∣∣∣∣∣
2+δ


≤ 2T−(2+δ)/2

T − l + 1

[rk0]+1

∑
m=1

T−l

∑
j=0

K2+δΨ2+δ

(
l

∑
t=1

c2
t

)(2+δ)/2

≤ 2T−(2+δ)/2

T − l + 1

[rk0]+1

∑
m=1

T−l

∑
j=0

K′l(2+δ)/2

= 2k−(2+δ)/2
0 ([rk0] + 1)K′

= O
(

k−δ/2
0

)
= O

((
l
T

)δ/2
)

= o(1).

The first inequality follows from Jensen’s and the triangle inequalities. The second inequality is straightforward
because {vt} is a L2+δ−mixingale of size −1 with uniformly bounded mixingale constants (see Result 2) and
therefore Lemma SA4 applies. Ψ = ∑∞

m=1 ψm < ∞ because {vt} is mixingale of size−1 which implies that K′ < ∞.
Therefore under given assumptions (SA.8) and (SA.9) are satisfied. By applying a FCLT for martingale difference

arrays, it follows that ∑
[rk0]+1
m=1 k−1/2

0 Vm ⇒W(r).

Proof of Theorem SA1: If we show that

1. T−1 ∑
[rT]
t=1 x•t x•′t ⇒p• rQ• for some Q• and

2. T−1/2 ∑
[rT]
t=1 v•t ⇒p• Λ•Wk(r) for some Λ•

are true under Assumption R′ with Assumption R′ 3-5 strengthened to Assumption R′′ 3-5, W•T will have the usual

fixed-b limit given by Kiefer and Vogelsang (2005). Especially we want to prove that (1) T−1 ∑
[rT]
t=1 x•t x•′t ⇒p• rQ and

(2) T−1/2 ∑
[rT]
t=1 v•t ⇒p• Λ•Wk(r) where Λ• = Λl when l is fixed and Λ• = Λ when l → ∞, l2/T → 0. Λ and Λl are

defined in Lemma SA7.

First we show that T−1 ∑
[rT]
t=1 x•t x•′t ⇒p• rQ. We can write∣∣∣∣∣ 1

T

[rT]

∑
t=1

x•t x•′t − rQ

∣∣∣∣∣ =
∣∣∣∣∣ 1
T

[rT]

∑
t=1

(
x•t x•′t − E•

(
x•t x•′t

)
+ E•

(
x•t x•′t

)
− xtx′t + xtx′t

)
− rQ

∣∣∣∣∣
≤
∣∣∣∣∣ 1
T

[rT]

∑
t=1

(
x•t x•′t − E•

(
x•t x•′t

))∣∣∣∣∣+
∣∣∣∣∣ 1
T

[rT]

∑
t=1

(
E•
(

x•t x•′t
)
− xtx′t

)∣∣∣∣∣+
∣∣∣∣∣ 1
T

[rT]

∑
t=1

xtx′t − rQ

∣∣∣∣∣ .

We can show that the first term converges to 0 in probability uniformly in r using Lemma SA5. Since x∗t and at are
weakly stationary xt is also weakly stationary. Note that under Assumption R′, {xtx′t − E(xtx′t)} is L2−mixingale

12



of size −1 with uniformly bounded mixingale constants (see Result 1). Since the mixingale coefficient is of size
−1, ∑∞

m=1 ψm < ∞. Also Assumption R′1 implies that ‖xtx′t‖r ≤ ∆, r > 2 by Hölder’s inequality (Davidson (2002,
9.21, p138)). Therefore the conditions required for Lemma SA5 are satisfied and we have

p•
(

sup
r∈[0,1]

∣∣∣∣∣ 1
T

[rT]

∑
t=1

(
x•t x•′t − E•

(
x•t x•′t

))∣∣∣∣∣ > η

)
= op(1).

Assumption R′ implies Assumption R. Therefore we have

p•
(

sup
r∈[0,1]

∣∣∣∣∣ 1
T

[rT]

∑
t=1

xtx′t − rQ

∣∣∣∣∣ > η

)
= op(1).

We are left with proving

p•
(

sup
r∈[0,1]

∣∣∣∣∣ 1
T

[rT]

∑
t=1

(
E•
(
x•t x•′t

)
− xtx′t

)∣∣∣∣∣ > η

)
= op(1).

To show this, we write as

sup
r∈[0,1]

∣∣∣∣∣ 1
T

[rT]

∑
t=1

(
E•
(

x•t x•′t
)
− xtx′t

)∣∣∣∣∣ = sup
r∈[0,1]

∣∣∣∣∣ 1
T

[rT]

∑
t=1

(
E•
(
x•t x•′t − E(xtx′t)

)
−
(
xtx′t − E

(
xtx′t

)))∣∣∣∣∣
≤ sup

r∈[0,1]

∣∣∣∣∣ 1
T

[rT]

∑
t=1

E•
(
x•t x•′t − E(xtx′t)

)∣∣∣∣∣+ sup
r∈[0,1]

∣∣∣∣∣ 1
T

[rT]

∑
t=1

(
xtx′t − E(xtx′t)

)∣∣∣∣∣
≡ Π1T(r) + Π2T(r)

using the triangle inequality. Note that

Π1T(r) = sup
r∈[0,1]

∣∣∣∣∣ 1
T

[rT]

∑
t=1

E•
(

x•t x•′t − E(xtx′t)
)∣∣∣∣∣

= sup
r∈[0,1]

∣∣∣∣∣∣ 1
T

Mr

∑
m=1

l

∑
s=1

E•
(

xIm+sx′Im+s − E(xtx′t)
)
− 1

T

l

∑
s=BMr+1

E•
(

xIMr+sx′IMr+s − E(xtx′t)
)∣∣∣∣∣∣

≤ sup
r∈[0,1]

∣∣∣∣∣ 1
T

Mr

∑
m=1

l

∑
s=1

E•
(

xIm+sx′Im+s − E(xtx′t)
)∣∣∣∣∣+ sup

r∈[0,1]

∣∣∣∣∣∣ 1
T

l

∑
s=BMr+1

E•
(

xIMr+sx′IMr+s − E(xtx′t)
)∣∣∣∣∣∣ .

Using Jensen’s inequality, we can write the second term as

sup
r∈[0,1]

∣∣∣∣∣∣ 1
T

l

∑
s=BMr+1

E•
(

xIMr+sx′IMr+s − E(xtx′t)
)∣∣∣∣∣∣ ≤ E•

 sup
r∈[0,1]

∣∣∣∣∣∣ 1
T

l

∑
s=BMr+1

(
xIMr+sx′IMr+s − E(xtx′t)

)∣∣∣∣∣∣
 ,

which in turn can be shown to be

E

E•

 sup
r∈[0,1]

∣∣∣∣∣∣ 1
T

l

∑
s=BMr+1

(
xIMr+sx′IMr+s − E(xtx′t)

)∣∣∣∣∣∣
 = O

(
l1/2

T

)
= o(1).

For details, see (SA.6) in the proof of Lemma SA5.
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For the first term, we can write

sup
r∈[0,1]

∣∣∣∣∣ 1
T

Mr

∑
m=1

l

∑
s=1

E•
(

xIm+sx′Im+s − E(xtx′t)
)∣∣∣∣∣ = sup

r∈[0,1]

∣∣∣∣∣ 1
k0

Mr

∑
m=1

1
l

l

∑
s=1

E•
(
xIm+sx′Im+s − E(xtx′t)

)∣∣∣∣∣
≤ 1

k0

Mr

∑
m=1

sup
r∈[0,1]

∣∣∣∣∣1l l

∑
s=1

E•
(
xIm+sx′Im+s − E(xtx′t)

)∣∣∣∣∣
≤
∣∣∣∣∣1l l

∑
s=1

E•
(

xI1+sx′I1+s − E(xtx′t)
)∣∣∣∣∣ .

The first inequality uses the triangle inequality. The second inequality follows from the fact that Mr ≤ k0, {Ij} is
i.i.d. uniformly distributed on {0, . . . , T − l}. Note that we can write (see Fitzenberger (1997))

E•
(

1
l

l

∑
s=1

(
xIm+sx′Im+s − E(xtx′t)

))
=

1
T

T

∑
t=1

(
xtxt − E(xtx′t)

)
+ Op

(
l
T

)
.

Because xtxt − E(xtx′t) is L2−mixingale of size −1 with uniformly bounded mixingale constants (see Result 1),
applying Lemma SA4, we can write

E

∣∣∣∣∣ T

∑
t=1

(
xtxt − E(xtx′t)

)∣∣∣∣∣ ≤
∥∥∥∥∥ T

∑
t=1

(
xtxt − E(xtx′t)

)∥∥∥∥∥
2

≤ KΨ

(
T

∑
t=1

c2
t

)1/2

= O
(

T1/2
)

.

Therefore

1
T

T

∑
t=1

(
xtxt − E(xtx′t)

)
= Op(T−1/2) (SA.10)

by Markov inequality and we have

E•
(

1
l

l

∑
s=1

(
xIm+sx′Im+s − E(xtx′t)

))
= Op(T−1/2) + Op

(
l
T

)
= op(1).

Hence, Π1T(r) = op•(1) in probability. By (SA.10), it is straightforward to show that Π2T(r) = Op(T−1/2) = op(1)
which completes the proof of the first condition.

Now we prove the second condition. Given our definitions for v•0t and v•t , we can write

v•t = v•0t − x•t x•′t
(

β̂− β
)

,

which implies that

T−
1
2

[rT]

∑
t=1

v•t = T−
1
2

[rT]

∑
t=1

(v•0t − E• (v•0t)) + T−
1
2

[rT]

∑
t=1

E• (v•0t)− T−
1
2

[rT]

∑
t=1

x•t x•′t
(

β̂− β
)

≡ Z•T(r) + Π•1T(r)−Π•2T(r).

First note that Z•T(1)⇒p• Λ•Wk(r) by Lemma SA7. Thus we are done if we show that supr∈[0,1]

∣∣Π•1T(r)−Π•2T(r)
∣∣ =

14



op•(1) in probability. Note that

Π•1T(r)−Π•2T(r) = T−
1
2

[rT]

∑
t=1

E•
(

x•t
(
y•t − x•′t β̂ + x•′t β̂− x•′t β

))
− T−

1
2

[rT]

∑
t=1

x•t x•′t
(

β̂− β
)

= T−
1
2

[rT]

∑
t=1

E•
(

x•t
(
y•t − x•′t β̂

))
+ T−

1
2

[rT]

∑
t=1

E•
(
x•t x•′t β̂− x•t x•′t β

)
− T−

1
2

[rT]

∑
t=1

x•t x•′t
(

β̂− β
)

= T−
1
2

[rT]

∑
t=1

E• (v•t )− T−
1
2

[rT]

∑
t=1

(
x•t x•′t − E•

(
x•t x•′t

)) (
β̂− β

)
≡ Γ•1T(r)− Γ•2T(r).

It is sufficient to show that supr∈[0,1]

∣∣Γ•1T(r)
∣∣ = op(1) and supr∈[0,1]

∣∣Γ•2T(r)
∣∣ = op•(1) in probability by the triangle

inequality. We first prove that supr∈[0,1]

∣∣Γ•1T(r)
∣∣ = op(1). We can write

Γ•1T(r) = T−
1
2

[rT]

∑
t=1

E• (v•t )

= T−
1
2

Mr

∑
m=1

B

∑
s=1

E• (v̂Im+s)

= T−
1
2

Mr

∑
m=1

l

∑
s=1

E• (v̂Im+s)− T−
1
2

l

∑
s=BMr+1

E•
(

v̂IMr+s

)
≡ µ•1T − µ•2T ,

where Mr = [([rT]− 1)/l] + 1, B = min{l, [rT]− (m− 1)l}, and BMr = [rT]− (Mr − 1)l. Recall that Mr ∈ {1, . . . , k0},
B ∈ {1, . . . , l}, and I1, . . . , Ik0 are i.i.d. uniformly distributed on {0, 1, . . . , T− l}. To show supr∈[0,1] |µ1T(r)| = op(1),
we write as

sup
r∈[0,1]

|µ•1T(r)| = sup
r∈[0,1]

∣∣∣∣∣T− 1
2

Mr

∑
m=1

l

∑
s=1

E• (v̂Im+s)

∣∣∣∣∣
= sup

r∈[0,1]

∣∣∣∣∣l1/2k−
1
2

0

Mr

∑
m=1

E•
(

1
l

l

∑
s=1

v̂Im+s

)∣∣∣∣∣
≤ l1/2k−

1
2

0 sup
r∈[0,1]

Mr

∑
m=1

∣∣∣∣∣E•
(

1
l

l

∑
s=1

v̂Im+s

)∣∣∣∣∣
≤ l1/2k1/2

0

∣∣∣∣∣E•
(

1
l

l

∑
s=1

v̂I1+s

)∣∣∣∣∣ .

The first inequality uses the triangle inequality. The last inequality follows from the fact that Mr ≤ k0. Note that

E•
(

1
l

l

∑
s=1

v̂I1+s

)
=

1
T

T

∑
t=1

v̂t + Op

(
l
T

)
= Op

(
l
T

)
.

See Fitzenberger (1997, MBB-lemma A.1) for details. The second equality follows from the fact that ∑T
t=1 v̂t = 0.

Hence,

sup
r∈[0,1]

|µ•1T(r)| = Op

(
l

T1/2

)
= op(1).

Note that Op

(
l

T1/2

)
= op(1) when l is either fixed or l → ∞, l2/T → 0.

Next we show that supr∈[0,1]

∣∣µ•2T
∣∣ = op(1). In fact we will show that supr∈[0,1]

∣∣µ•2T
∣∣ = Op(k−1/2

0 ) which implies

supr∈[0,1]

∣∣µ•2T
∣∣ = op(1) for both l fixed and l2/T → 0, l → ∞. By the the Markov inequality, it is sufficient to show
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that E
(

supr∈[0,1]

∣∣µ•2T
∣∣) = O(k−1/2

0 ). First note that we can write

|µ•2T | =

∣∣∣∣∣∣T− 1
2

l

∑
s=BMr+1

E•
(

v̂IMr+s

)∣∣∣∣∣∣
=

∣∣∣∣∣∣T− 1
2

l

∑
s=BMr+1

E•
(

vIMr+s − xIMr+sx′IMr+s(β̂− β)
)∣∣∣∣∣∣

≤

∣∣∣∣∣∣T− 1
2

l

∑
s=BMr+1

E•
(

vIMr+s

)∣∣∣∣∣∣+
∣∣∣∣∣∣ 1
T

l

∑
s=BMr+1

E•
(

xIMr+sx′IMr+s

)∣∣∣∣∣∣
∣∣∣√T(β̂− β)

∣∣∣ .

Therefore,

sup
r∈[0,1]

|µ•2T | ≤ sup
r∈[0,1]

∣∣∣∣∣∣T− 1
2

l

∑
s=BMr+1

E•
(

vIMr+s

)∣∣∣∣∣∣+ sup
r∈[0,1]

∣∣∣∣∣∣ 1
T

l

∑
s=BMr+1

E•
(

xIMr+sx′IMr+s

)∣∣∣∣∣∣
∣∣∣√T(β̂− β)

∣∣∣ .

To show that supr∈[0,1]

∣∣µ•2T
∣∣ = Op(k−1/2

0 ), it is sufficient to show that supr∈[0,1]

∣∣∣∣∣T− 1
2

l
∑

s=BMr+1
E•
(

vIMr+s

)∣∣∣∣∣ = Op(k−1/2
0 )

and supr∈[0,1]

∣∣∣∣∣ 1
T

l
∑

s=BMr+1
E•
(

xIMr+sxIMr+s′
)∣∣∣∣∣ = Op(k−1/2

0 ) because
√

T(β̂− β) = Op(1). By Markov inequality, it is

sufficient to show that

E

k1/2
0 sup

r∈[0,1]

∣∣∣∣∣∣T− 1
2

l

∑
s=BMr+1

E•
(

vIMr+s

)∣∣∣∣∣∣
 = O(1) and (SA.11)

E

k1/2
0 sup

r∈[0,1]

∣∣∣∣∣∣ 1
T

l

∑
s=BMr+1

E•
(

xIMr+sx′IMr+s

)∣∣∣∣∣∣
 = O(1). (SA.12)

First we show (SA.11). Note that

E

k1/2
0 sup

r∈[0,1]

∣∣∣∣∣∣T− 1
2

l

∑
s=BMr+1

E•
(

vIMr+s

)∣∣∣∣∣∣
 = E

k1/2
0 sup

r∈[0,1]

∣∣∣∣∣∣T− 1
2

l

∑
s=BMr+1

1
T − l + 1

T−l

∑
j=0

vj+s

∣∣∣∣∣∣


≤ E

 k1/2
0 T−

1
2

T − l + 1

T−l

∑
j=0

sup
r∈[0,1]

∣∣∣∣∣∣
l

∑
s=BMr+1

vj+s

∣∣∣∣∣∣


≤ E

 k
1
2
0 T−

1
2

T − l + 1

T−l

∑
j=0

max
1≤i≤l

∣∣∣∣∣ j+l

∑
s=j+i

vs

∣∣∣∣∣


≤
k

1
2
0 T−

1
2

T − l + 1

T−l

∑
j=0

∥∥∥∥∥max
1≤i≤l

∣∣∣∣∣ j+l

∑
s=j+i

vs

∣∣∣∣∣
∥∥∥∥∥

2+δ

(SA.13)

≤
k

1
2
0 T−

1
2

T − l + 1

T−l

∑
j=0

KΨl1/2 = O(1).

The first equality is by the definition of E•. Recall that {Ij} is i.i.d. uniformly distributed on {0, . . . , T − l}. The
first inequality is trivial by the triangle inequality. The second inequality is obvious because for r ∈ [0, 1], B ∈
{1, . . . , l}. The third inequality follows from the norm inequality (Davidson (2002, 9.23, p138)). Also note that
under Assumption R′′, {vt} is a L2+δ−mixingale of size −1 with uniformly bounded mixingale constants (see
Result 2). Then, applying Lemma SA4, the fourth inequality immediately follows. Furthermore, the mixingale
coefficient being of size−1 implies that Ψ = ∑∞

m=1 ψm < ∞.
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Next we show (SA.12). Following the same steps used to show (SA.13), we can write

E

k1/2
0 sup

r∈[0,1]

∣∣∣∣∣∣ 1
T

l

∑
s=BMr+1

E•
(

xIMr+sxIMr+s′
)∣∣∣∣∣∣


≤
k

1
2
0

T(T − l + 1)

T−l

∑
j=0

∥∥∥∥∥max
1≤i≤l

∣∣∣∣∣ j+l

∑
s=j+i

xj+sx′j+s

∣∣∣∣∣
∥∥∥∥∥

2

=
k

1
2
0

T(T − l + 1)

T−l

∑
j=0

∥∥∥∥∥max
1≤i≤l

∣∣∣∣∣ j+l

∑
s=j+i

(
xj+sx′j+s − E(xtx′t) + E(xtx′t)

)∣∣∣∣∣
∥∥∥∥∥

2

≤
k

1
2
0

T(T − l + 1)

T−l

∑
j=0

∥∥∥∥∥max
1≤i≤l

∣∣∣∣∣ j+l

∑
s=j+i

(
xj+sx′j+s − E(xtx′t)

)∣∣∣∣∣
∥∥∥∥∥

2

+
k

1
2
0 l

T(T − l + 1)

T−l

∑
j=0

E(xtx′t)

≤
k

1
2
0

T(T − l + 1)

T−l

∑
j=0

KΨl
1
2 +

k
1
2
0 l

T(T − l + 1)

T−l

∑
j=0

E(xtx′t)

=KΨ
(k0l)1/2

T
+

k1/2
0 l
T

E(xtx′t)

=O(T−1/2) + O

((
l
T

)1/2
)

.

The second inequality follows from the Minkowski inequality (Davidson (2002, 9.27, p139)). Note that {xtx′t −
E(xtx′t)} is L2−mixingale of size −1 with uniformly bounded mixingale constants (see Result 1). Thus, using
Lemma SA4, the third inequality follows immediately. The first term is O(T−1/2) = o(1). The second term is
O((1/T)1/2) = o(1) because l is either fixed or increasing slower than T. Hence we have shown that supr∈[0,1]

∣∣µ•2T
∣∣ =

op(1).

So far we have supr∈[0,1]

∣∣µ•1T(r)
∣∣ = op(1) and supr∈[0,1]

∣∣µ•2T(r)
∣∣ = op(1), which implies that supr∈[0,1]

∣∣Γ•1T(r)
∣∣ =

op(1). We are left with proving supr∈[0,1]

∣∣Γ•2T(r)
∣∣ = op•(1). We can write

sup
r∈[0,1]

|Γ•2T(r)| = sup
r∈[0,1]

∣∣∣∣∣T− 1
2

[rT]

∑
t=1

(
x•t x•′t − E•

(
x•t x•′t

))∣∣∣∣∣ ∣∣β̂− β
∣∣

= sup
r∈[0,1]

∣∣∣∣∣ 1
T

[rT]

∑
t=1

(
x•t x•′t − E•

(
x•t x•′t

))∣∣∣∣∣ ∣∣∣√T(β̂− β)
∣∣∣ .

We know that
∣∣∣√T(β̂− β)

∣∣∣ = Op(1). From Lemma SA5, supr∈[0,1]

∣∣∣T−1 ∑
[rT]
t=1 (x•t x•′t − E• (x•t x•′t ))

∣∣∣ = op•(1). Hence

supr∈[0,1]

∣∣Γ•2T(r)
∣∣ = op•(1), which completes the proof of Theorem SA1.
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