Supplemental Appendix

We state primitive conditions that are sufficient for fixed-b asymptotic theory in Section 3.1 and the asymptotic
validity of the bootstrap in Section 4 with proofs for the random missing process case. For the non-random miss-
ing process case, primitive conditions are made about the latent process. Hence the results of (Goncalves and
Vogelsang (2011) directly apply and no proofis required.

We derive results under the assumption that the latent processes is near epoch dependent (NED) on an un-
derlying mixing process similar to|Goncalves and Vogelsang (2011) and that the missing process is strong mixing.
We follow the definitions in |Davidson| (2002). Let the L, norm of x be defined as ||x||, = (E|x|F)"/?. Also, let
| | denote the Euclidean norm of the corresponding vector or matrix. For a stochastic sequence {¢;}%,,, on
a probability space (Q), F, P), let ]-'ff;;’ = o(&—m,...,€+m), such that {}'fffn” m—o 1s an increasing sequence of
o-fields. We say that a sequence of integrable random variables {w;}%,, is L,—NED on {&}*,, if, for p > 0,
|we — E(we| FEW) |l < divm, where v, — 0 and {d;}*,, is a sequence of positive constants. For a sequence
{ar}®y, let L, = o(...,a;_1,a;), and similarly define 7%, = o(as4m, ar4m+1,--. ). The sequence is said to be
a—mixing if lim;;, .. &y = 0, where &, = sup, SUPGert  HEFS, |[P(GNH) — P(G)P(H)|. A sequence is « —mixing
of size —ipg if v, = O(m~¥) for some ¢ > . Similarly, a sequence is L,-NED of size —¢y if v,, = O(m~?) for
some ¢ > ¢p.

We first state the primitive conditions that are sufficient for fixed-b asymptotic theory when the missing pro-
cess is random and the AM approach is used (Lemma [SA1). Recall that Assumption R is sufficient for fixed-b
asymptotic theory to go through when the missing process is random and the AM approach is used (Section 3.1).

Assumption R.

[rT]
L TV xx, = rQ, Vr€0,1].
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9 T-1/2 El v = AW (r), Vr € [0,1].

The following Assumption R’ is sufficient for Assumption R.

Assumption R'.

1. Forsomer > 2, ||x{||,, <A <coforallt=1,....

2. {x}} is a weakly stationary sequence L,—NED on {e; } with NED coefficient of size — 2(::21) .

3. ||v§]l, £ A < o0, and E(vi) =0 forallt =1,2,....

4. {v}} is a mean zero weakly stationary sequence L,-NED on {¢;} with NED coefficient of size — %
5. {(at, &)} is aa—mixing sequence with o —mixing coefficient of size — i—’z

6. {a;} is a weakly stationary process that is independent of { (x}, uf)}.

7. Q =limr_,o Var (T*1/2 YL, utv;‘) is positive definite.

Lemma SA1. Assumption R is sufficient for Assumption R.

Proof: |Goncalves and Vogelsang| (2011, Assumption 1) is sufficient for Assumption R and we show that As-
sumption R’ is sufficient for Assumption R by showing that when Assumption R’ is satisfied the AM series satisfy
Goncalves and Vogelsang| (2011, Assumption 1).

Define e; = (at,¢;). With Assumption R/, the AM series satisfy the following conditions (Gongalves and Vogel-
sang| (2011, Assumption 1)):

1. Forsomer > 2, ||x¢|lr <A <coforallt=1,2,....



. {x;} is a weakly stationary sequence L,-NED on {e;} with NED coefficients of size — 2(r 21) .

N

w

. Not|lr < A < oo,and E(vy) = 0forallt=1,2,....

=

{v:} is a weakly stationary sequence L,-NED on {e;} with NED coefficients of size — 3.

{e+} is an a—mixing sequence of size — 2.

o

6. Q = limy_ e Var (T‘l/z Y, vt> is positive definite.

1: Note that

Ixtll2r = llaextllor < l|xf]lor SA<o0,t=1,...,7 > 2.

The first inequality follows form the fact that {a; } is a binary sequence. The second inequality is Assumption
R'1.

2: Because {a;} and {x; } are weakly stationary, {x;} is also weakly stationary. To show that {x;} is L,-NED, we
first define the following notation. Let F! = o (es, €541, - - -, €¢) and G = o (g5, €541, . . ., €;). Note that we can
write

v — G| FEE, = lloe (o — EGHLFED)|

P
< || — E f”’")H
<2 (xi = EGFIGEED)
SZdtl/m.

The first equality follows from the fact that {a;} is 7" measurable. The first inequality is straightforward
because {a;} is a binary sequence. The second 1nequa11ty uses [Davidson| (2002} 10.28, p157). The last in-
equality uses the fact that {x; } is L,—NED on {¢; } with NED coefficient of size —2(r — 1) /(r — 2) (Assump-
tion R’2). Therefore we have

||arxi — E(apx; |]-"t+'”)Hp <dyvy, di=2d,
where vy, is of size —=2(r — 1)/ (r — 2).
3: Note that we can write
[oellr = [lasof [l < [loF]ly <A < oo, 7>2.
The first inequality uses the fact that {a;} is a binary sequence. The second inequality is Assumption R’3.

4: The proof of the fourth condition is identical to that of the second condition. we can write

Javof — ECaeci | FED], = o (o — ECof | F0) |

p
< [|(of = vt\f”’” N,
< 2| (o — E@i1G: 50,
S Zdtl/m.

The first equality follows from the fact that {a;} is F/*/ measurable. The first inequality is straightforward
because {a;} is a binary sequence. The second 1nequa11ty uses [Davidson| (2002} 10.28, p157). The last in-
equality uses the fact that {v;} is L,—NED on {¢;} with NED coefficient of size —1/2 (Assumption R'4).
Therefore we have

|arvf — E(ayvf \.7-"““'”)”}7 < dy, dj=2d;,

where v, is of size —1/2.



5: The fifth condition is identical to Assumption R’5.

6: The sixth condition is identical to Assumption R'7. O

Next, we prove that when the missing process is random and Assumption R’ with Assumption R’ 3-5 strength-
ened to Assumption R” 3-5 is satisfied, the moving block bootstrap (MBB) HAR Wald test, W, defined in Section
4 has the usual fixed-b limit in Kiefer and Vogelsang (2005). This result is stated in Theorem|SA1

Assumption R”.
3. v, ps < 00,7 > 2.
4. {v}} is a weakly stationary Ly s—NED on {e;} with vy, of size —1.

5. {(at, &)} is aa—mixing sequence with o, of size — %

Theorem SAl. Let W7 and t} be naive bootstrap test statistics obtained from the moving block bootstrap resamples
as defined in Section 4. Suppose that the block size is either fixed as T — oo orl — oo asT — oo such that */T — 0.
Letb € (0,1] be fixed and suppose M = bT. Then, under Assumption R with Assumption R 3-5 strengthened to
Assumption R"3-5,as T — oo,

W2 LN Wy (1)P(b, By) "' Wy (1)

and

For the proof of Theorem [SAl} we start by three lemmas (Lemmas [SA2HSA4) which are the building blocks
for proving the required weak dependence of the functions of AM series - {x;x;}, {v;}, {v;7] +j} (Results .

With these required weak dependence results of the functions of AM series, we prove three lemmas (Lemmas
SA5HSA7). These lemmas in turn would be used to prove that Assumption R’ with Assumption R’ 3-5 strength-

ened to Assumption R” 3-5 is sufficient for conditions (a) and (b) in Section 4, (a) T~! Zyj xpxp! LN rQ* and (b)

T-1/2 Efl] op LA Wi (r), which completes the proof of Theorem|SA1

Lemma shows that under Assumption R’ the mean zero AM series are mixingales (see, e.g., Davidson
(2002, p247) for a definition of mixingale). Lemma and Lemma show properties of NED and mixingale
sequence. With these three lemmas we show in Results|113|that the functions of AM series - {xx;}, {v:}, {010}, ]-}

- satisfy the required weak dependence conditions.

Lemma SA2. Letr > p > 1. Suppose ||w;|, < A < oo. Let {a;} be a random sequence which takes values either 0
orl. If{(as, &)} is a x—mixing sequence with ay, of size —a and {w;} is L,—NED on {&;} with vy, of size —b, then
{arw; — E(agwy), F'} is L,—mixingale of size — min{b,a’2} with uniformly bounded mixingale constants where
F! is a nondecreasing sequence of c-fields, o (X¢, X¢—1,...), Xt = (a1, ).

Proof: We start by defining the following notation. Let X¢ = (ay, &), F! = ¢ (Xs, Xs41,---, X¢t), Gt = 0 (es, 8551, -, €1).
Proving that {a;w; — E(a;w;)} is L,—mixingale is equivalent to proving

|| E [arws — E(aywy) | F2] ||p < i (SA.1)

Hatwt — E(atwt) —E [atwt — E(atwt)|fitom] ||P < ctPpy1- (SA.2)

Proof of (SAI): Let m > 1 and let k = [] be the largest integer not exceeding 4. By the Minkowski inequality
(Davidson| (2002}, 9.27, p139)) we can rewrite (SA.I) as



IE v — Elaron) 20,
= HE {atwt —a4E [wt\g’”’k} +a;E {wt|gt+k} —E (atE [wt\gt”‘D +E (atE [wt|gt+kD E(atwt)‘ Fi m] H
<|[E far (o= B [nigitt] )| 71|+ [E ok [l Gi] - E (aik [wngitf] )| 72

+ [ (o (£ g 3] )],

=1l + 11, 4+ 1.

p

We can bound each of the three terms as follows. I'T; can be rewritten as
T < Joe (e = € [l ] )|

< - gz,
< dﬂ/k.

The first inequality uses the conditional Jensen’s inequality and law of iterated expectations. The second inequal-
ity is straightforward because 4; is a binary process. Third inequality is using the fact that w; is L,—NED on {&;}
with NED coefficient v,.

Next we bound I'l,. Note that E {wt|g t“‘} is a finite-lag measurable function of &; g, ..., &, for finite k. Be-
cause {(a;, &)} is an a—mixing sequence with a,, of size —a, E {wﬂQﬁﬂ is a—mixing of size —a. This in turn

implies that a;E [wt|gt+k} is a—mixing of size —a (seeDavidson| (2002, Theorem 14.1, p210)). Then, using a mix-
ing inequality (Davidson| (2002, Theorem 14.2, p211)), we can write

1
r

. 1
H2§2<2P+1>alf

ik [w191%]],

< 60(% asE {wt|gt+k} H
1.1

<) " | [wigs]|
1.1

<o6a) " lwl,

The second and the third inequalities are straightforward by noting that p > 1 and 4, is a binary process. The last
inequality follows from the conditional Jensen’s inequality and law of iterated expectations.

Finally, we bound IT3. I3 can be rewritten as

= o (2 [o19] - )|
< o (e[wistt] - )
< [ o] -,
< o2 ],
< dywy.

The first inequality uses Jensen’s inequality. Because 4; is a binary process the second inequality is straightfor-
ward. Because p > 1, by Liapunov’s inequality (Davidson/ (2002, 9.23, p138)), the third inequality is also straight-
forward. The last inequality follows from the fact that w; is L,—NED on {e;} with NED coefficient v,,. Hence



combining the inequality results for all three terms, we have

HE [atwt — E(lltwt)|]:t,;om} Hp < All + A12 + A13

1_1

S Zdtvk + 60615 ' ||wt||r

11
< max {dy, [|w||,} (21/k + 6a) ’) = ctPm.

Proof of (SA.2): We can rewrite (SA.2) as

H(atwt — E(aywy)) — E [ayw; — E(atwt)|fiﬁom] Hp = Hutwt — E [aywy| fiﬁom] Hp
<2 lagw; — E [aor| F 20T,
=2 ||\aswy — atE [we| F{H)] Hp - ap is FIT" — measurable
<2 s [w F],

<2dywy < Zdtl/[mzrl] < cPmaa-

The first inequality follows from Davidson!| (2002, 10.28, p157). The second inequality is straightforward because a;
is a binary process. The third inequality is using the fact that w; is L,—NED on {¢;} with NED coefficient v;,. The
fourth inequality is straightforward because without loss of generality we can consider {v;,}$’_; as a decreasing
sequence. Recall that vy, is of size —b and a,, is of size —a. Therefore {a;w; — E(a;w;)} is L, —mixingale with ¢;, of

size — min {b,ar;—f} with ¢; << max {dy, ||w||,}.

Now we are only left with proving that the mixingale constants are uniformly bounded. According to the
Minkowski inequality (Davidson| (2002, 9.27, p139)) and conditional Jensen’s inequality,

Jeoe = E [anlg 1, < ool + [[E [ g1 |
< Jlwrll, + lforl,

= 2w, -

Since ||w¢||, < ||w:||, by the norm inequality (Davidson| (2002, 9.23, p138))) and ||w¢||, is uniformly bounded, we
14 r y r

can setd; equal to a finite constant for all . Thus, mixingale constant, c; << max {dy, ||[w¢||,} < max {2 [l | pr [l ], },
is uniformly bounded. O

Lemma SA3. Let x; and w; be L,-NED on {e;} with v;, and vy, of respective sizes —¢ and —¢. Then xyw; is
L,/,-NED of size — min{¢y, ¢ }.

Proof: We follow the proof of Davidson| (2002, Theorem 17.9, p268). Define F! = o (es, e541,...,¢;). By the
Minkowski inequality (Davidson| (2002} 9.27, p139)), we can write

|| x¢we — E [xpwe| F{E0] Hg = |[xsws — x¢E [w| F{ 0] + x:E [wi] F{AN] — E [xe| F{E0] E [we| i
+E [ FERT E [ FE] = B [ FERT
< lxror — 3eE [aoe] ] g + lxeE [ FE2] — E [ FE) E ] F
+ || E [xel FER) E [we] Fit] = B [xewe| T3]
=I1; + I, +I15.
First consider I'l;. By Holder’s inequality (Davidson! (2002} 9.21, p138)) we can write
I = [|xt (wr = E [wi FE3D |y < llxelly e = E [er FE5]]

< lxell, @ vin-

p



The second inequality is straightforward because w; is L,—NED with NED coefficient vj;.
Next we consider IT,. By Holder’s inequality (Davidson| (2002} 9.21, p138)), the conditional Jensen’s inequality,
and the law of iterated expectations, we can write

I = [|(x — E [xe F25]) E [wel FERT g < [lxe = E [ TR Ml

<|
< vy llw], .
The second inequality is straightforward because x; is L,—NED with NED coefficient v},
For I3, using the conditional Jensen’s inequality we can write
My = ||E [(xt = E [xe| FE) (we = E [ FERD [ FE g < Ml (e = B [l FER]) (wi = E [wr] FERD)
< lxe = E [ FER [leor — B [or] FER |

XX JW., W
< div,divy.

P
The second inequality uses Hélder’s inequality (Davidson| (2002, 9.21, p138)). The third inequality follows from
the fact that both x; and w; are L,—NED on {e+}. Combining the three inequality results for I1y, IT,, and I3,
|| xews — E [xewe| F{A] H% < |lxell, di vy + divy, |lwill, + divydivy,
< max { [[xl, &, ol 45, dFd? b (vis + v, + Vi) = div.

In other words, x;w; is L, /o—NED on {e;} with NED coefficients v, = vy + vy, + vy,vy. This completes the proof
because v,,, = O (m*min{sbww})' O

Lemma SA4. For some nondecreasing sequence ofo-fields{ F'} and for somep > 1, let {w;, F'} bean L,—mixingale

with mixingale coefficients , and mixingale constants c;. Then letting S; = Zﬁzl wyand¥ = Y01 P, it follows
that

1
T B
max |Sj||| < KY¥ Ectﬁ , B =min{p,2}
J<T p t=1
for some generic constant K.
Proof: SeeHansen|(1991), Hansen! (1992). O

Result 1. Under Assumption R', {x;x; — E (x¢x})} is L,—mixingale of size —1 with uniformly bounded mixingale
constants.

Proof: First, we can show that under Assumption R/, {x;x;’} is L,—NED on {e;} of size —1 (see Davidson
(2002, Example 17.17, p273)). Also note that ||xfx;’|, < A < oo by Assumption R'1 and Hoélder’s inequal-
ity (Davidson| (2002}, 9.21, p138)). Therefore using Lemma [SA2} {a;x}'x}’ — E (a;x;'x}’)} is L, —mixingale of size
—min {1, (2r/(r —2)) x ((r — 2)/2r) } with uniformly bounded mixingale constants. In other words, {x;x; — E (x;x})}
is Ly—mixingale of size —1 with uniformly bounded mixingale constants. O

Result 2. Under Assumption R”, vy is L, , s— mixingale of size —1 with uniformly bounded mixingale constants.

Proof: Using Lemma [SA2} a;0f — E(a;vf) is Ly, ,—mixingale of size —min{1, ((2+ 6)(r +6)/(r —2)) x ((r —
2)/2r)} = —min{1, (2+9)(r + ) /2r} = —1 with uniformly bounded mixingale constants. Note that E(a;v; ) = 0.
Hence a;vf is L, ;—mixingale of size —1. In other words, v; is L, s-mixingale of size —1 with uniformly bounded
mixingale constants. O



Result 3. Under Assumption R", {vtv;ﬂ- —E (vtv;ﬂ.) } is Li2+s),—mixingale of size —1 with uniformly bounded
mixingale constants.

Proof: Note that under Assumption R”4, {v}} is L, ;—NED on {¢;} of size —1, which implies that {v} +j} is

Ly, s—NED on {¢;} of size —1 as well (see Davidson! (2002, Theorem 17.10, p268)). Then {vafjrj} is L +4/,—NED

on {¢; } of size —1 by Lemmal[SA3| Also note that under Assumption R"5, {(a;, &;) } is a-mixing of size —(2+)(r+4) /(r -

which implies that the binary process a;4;; is also a—mixing of the same size, —(2+9)(r+)/(r —2). By the applica-

tion of Lemma|SA2 {atatﬂv;‘v;”ﬂ- —E (atatﬂv;kv;‘jrj) } is L5, 5),o—mixingale of size — min{1, ((2+6)(r +6)/(r —
2)) x ((r—2)/2r)} = —min{1, (2+ 6)(r + 6)/2r} with uniformly bounded mixingale constants. In other words,
{vtvi +j—E (vtvtﬂ) } is L (5 4)/o—mixingale of size —1 with uniformly bounded mixingale constants. O

Using Results 1-3 above, we prove Lemmas Lemma establishes a LLN for the MBB sample mean.
Lemma gives the probability limits of the MBB variance of the scaled bootstrap sample mean. Lemma [SA7
establishes a FCLT for the MBB partial sum process. These will be used to prove Theorem|[SA1

Our proofs and notation are similar to those of|Goncalves and Vogelsang| (2011). We use the following notation.
Define the vector w; = (i, x;)’ that collects dependent and explanatory variables. Let/ € IN(1 <! < T) be a block
length and let B;; = {w¢, w11, ..., wi1—1} be the block of I consecutive observations starting at w;. Draw kg = T/1
blocks randomly with replacement from the set of overlapping blocks {By,...,Br_;+1;} to obtain a bootstrap
resample denoted as wy = (yf,x!'), t = 1,...,T. Given MBB resample w} = (yf,x{’)’, we let v, = x?(y; —
x'B) = xtul, and v} = xP(y} — xt’ B) = xpup. p‘ denotes the probability measure induced by the bootstrap
resampling, conditional on a realization of the original time series. Let Z} be bootstrap statistics. Then, we write

Z3 = o0pe(1) in probability or Z7. % oifforany e > 0,6 > 0, limy_e plp*(|1Z%| > 6) > €] = 0. Similarly we say
that Z$ = O, (1) in probability if for all ¢ > 0 there exists an M, < oo such that lim7_,. p[p®(|Z}| > M) > €] = 0.

Finally, we write Z7. % Zin probability if conditional on the sample, Z7 weakly converges to Z under p*, for all

samples contained in a set with probability converging to one. Specifically, we write Z7. % Zin probability if and
only if E*[f(Z%)] — E[f(Z)] in probability for any bounded and uniformly continuous function f.

Lemma SA5. Suppose that {w; — E(w;)} is a weakly stationary L, — mixingale with [wtl], < A < oo for somep > 2
such that its mixingale coefficients y,, satisfy } ,._, { < oo and its mixingale constants are uniformly bounded.
Let{w} : t =1,..., T} denote an moving block bootstrap resample of {w; : t = 1,..., T} with block size! satisfying
either of the two following conditions: (a)l is fixed as T — oo, or (b)| — oo as T — oo withl = o(T). Then, for any
n>0,asT — oo,

[T

T~HY (wf — E* (w}))

t=1

p* ( sup > 17) =o0p(1).
rel0,1]

Proof: We follow|Goncalves and Vogelsang| (2011, Proof of Lemma A.4). Note that we can write

=

r 1Mr

B
( E. wt Z wlm"rs wlm+5))
1 m:l s=1

Sl =

t

where M, = [([rT] —1)/I] 4+ 1and B = min{[, [rT| — (m — 1)l}. Note that I, .. ., I, are i.i.d. uniformly distributed
on{0,...,T—I}andforr € [0,1], M, € {1,...,ko} and B € {1,...,1}. We can further write

1M, B 1My 1 !

- Z Z Wi, +s — E* (w,45)) = — Z Z Wi, +s — E* (wi,45)) — T Z (wIM,+s —E* (wIMrJrs))

m 1s= m 1s= 5= BMR+1

=I7(r) + Ipr(r),

2)



where By, = [rT] — (M, — 1)1. By the Markov inequality it is sufficient to show that

rel0,1] rel0,1] m=1s=1

M, I 2
E* <sup |H1T(r)|2> —E* (sup % Y Y (w15 — E* (wh,45)) ) =o0p(1) and (SA.3)

E* (sup |H2T(r)|> _F* (sup % y (wIMﬁS _E° (w,MrH))D =0,(1). (SA.4)

rel0,1] rel0,1] s=Bp, +1

First we consider (SA.3). Note that M; = Z{n 1 Zé 1 (wg,+s — E® (wy,,+5)) is a martingale array with respect to
Frj=0 (h,..., ]) By Doob’s 1nequahty (seeDavidson| (2002} 15.15, p241)), it follows that

E* | sup
rel0,1]

We can further write as

M,

1
T

1 2
1
Z wlm""s wIm"rS))’ ) = TZE (r_n,ixo |M]|2>

m=1s=1

l

E* (‘]Mkolz) = koE® S:Zi (w11+s —E* (w11+5))

2)
I
=koE® | |) (wr, s — E(wy) + E(we) — E* (wr, 15))
s=1

)
l 2
=koE* | | Y. (wr,+s — E(wt)) — E* (wp,4s — E(wy)) )
s=1
2
. ( ) |

The first equality follows from the fact that Y_X_, (w;, s — E® (wy, 1)) is a sum of independent random variables
with respect to the probability measure p*® and I; ~ i.i.d. uniform {0,..., T —I}. The inequality follows immedi-
Using Lemma[SA4]we can show that

ately from Jensen’s and the triangle inequalities.
2
E <2k0E‘ ( )) =0O(T).

E (E' <sup |H1T(r)|2)> = 50(T) = O(T™1) = 0(1). (SA.5)

re(0,1]

1

Y (wr+s — E(wy))

s=1

!

E (w11+s - E<wt))

s=1

Hence,

By the Markov inequality implies and we are left with proving (SA.4).



Notice that we can write

E* (sup HzT(r)|> =E* | sup

ref0,1] rel0,1]

(s ()

~l -

~l -
Il
M~ - §M~

- (g = ECwr) + EG0) 2 (i -.)) )
rel01] | * s=By,+1
L ] 1 [ ]
—E s 7 oy (wIMrH - E(wt)) —E (wIMr+s - E(wt)) )
1
S 2E* ( sup 2 (wIM 45 — E ZW)) |>
ref0,1] =
T s 1 - )
=T 77 T j+s t))|-
7l+1] 0rel01] T O+

The inequality follows immediately from Jensen’s and the triangle inequalities. The last equality follows from the
fact that Iy;, ~ i.i.d. uniform {0,..., T —I}. Note that

1 ! 1 j+l
E| sup |+ Z (wjts — E(wy))| | < =E (max Z (wiys — E(wr))
(re[m] Ts:BMr-H j+s T \1<i<i S i+s
1 j+l
< 7 |max | X (wes — E(wr)
s=j+1 ”

Recall that for any r € [0,1], By, € {1,...,1}. Hence the first inequality follows immediately. By the norm in-
equality (Davidson| (2002, 9.23, p138)), the second inequality is also straightforward. Since { wjys—E (wy)} is
L, —mixingale, applying Lemma|SA4} we can write

j+ ! 172

max | Y (wjps — E(wy)) ||| <KY¥ (Z c%) ,
1<i<l|. .= —
s=j+i 2 t=1

where {c; } are mixingale constantsand ¥ = ), _; i, < oo. Since the mixingale constants are uniformly bounded,
1/2
KY (Zt 1 ct) = O(I1'/2), which implies that

Loy B )| o5
E| sup |= wjs — E(wy) < = || max wiys — E(wy) =0 —|.
refon] | T s=Bpg, +1 o T |j1<i<i s=j+i o ) T
Therefore,
1 jtl /2
E(E*| sup |TIr(r)] ] | < T || max ;‘(wﬁs —E(wy))||| =0 - =o(1). (SA.6)
76[0,1] s_]+1 2
Note that O (#) = 0(1) for both ! fixed and | — co,1/T — 0. By Markov inequality implies which
completes the proof. O

Lemma SA6. Let Q% = Var® (T‘l/ 2y, v(’]t) . Suppose that Assumption R is satisfied.



(a) Forany fixed! suchthat1 <1< T,T — oo,
l j ,
p lim O = Iy +]; <1 - l) (rj+r].) =q,
wherel; = E (vtv;_j).
(b) Letl = It — o0 asT — oo such that?/T — 0. Then,

p%E%oQ}:Fo+jx (rj+17) =0

=)
=1

Proof: From Lemma we know that Assumption R’ is sufficient for Goncalves and Vogelsang| (2011}, Assump-
tion 1) which is sufficient for|Goncalves and Vogelsang| (2011, Assumption A). This in turn is sufficient for proving
this lemma. See|Goncalves and Vogelsang| (2011) for details. O

Lemma SA7. Suppose that Assumption R' holds. Define Z$ = T~1/2 2[7@1 (vg; — E*® (vg,;))- LetQy and Q) as defined
in Lemmal[SAG be positive definite matrices. It follows that

(a) Forany fixedl suchthatl <1 <TasT — oo,
Z3(r) =7 AW,
in probability where A\ is the square root matrix of ();.
(b) Letl = It — o0 asT — oo such that?/T — 0. Then
Z3(r) =P AWL(r),

in probability where A is the square root matrix of Q).

Proof: We follow the proofs in|Goncalves and Vogelsang (2011, Lemma A.3). In fact, a sufficient condition for the
proof is that v; is L, s—mixingale with size —1 with uniformly bounded mixing coefficients, which is implied by
Assumption R” (see Result[2).

We will show A'/Q%~1/27-1/2 ZE} (08 — E*(vg,)) =*" A’Wj(r) in probability for any A such that A’A = 1. For
anyr € [0,1], we can write

[rT]
NOFVAT Y (o, — B (o))

t=1
1/2 M8
=NQF2TV2 Y Y (0),45 — E*(01,45))
m=1s=1
1/27-1/2 & 1/21-1/2 l
=NQFVAT V2N Y (0,06 — E*(vg,40)) — A QYT Y (UIMY+S —E°(Ulm+s))
m=1s=1 s=By, +1

=Iy7(r) — T (7),

where M, = [([rT] —1)/1] +1, B = min{l, [rT] — (m — 1)}, and By, [rT] — (M, — 1)l. Recall that I, ..., I are i.i.d.
uniformly distributed on {0,...,T — I} and forany r € [0,1], M, € {1,...,ko} and B € {1,...,1}. We first show
that sup,. o | [Ty (r)| = Ope (kal/z) = 0, (1) in probability and then show that ITyr(r) =" Wy (r).

To show sup,¢ o 1) [Tl2r(r)| = Ope (k(;l/z), it is sufficient to show E*® (supre(oll] \HZT(r)|) = Op(kal/z) by the
Markov inequality. Notice that Q}fl/ 2 = Oy (1) because by Lemma ‘ plim O} = O° and Q° is p.d.. Therefore,
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it is sufficient to show that E® (Supre(o,l} ’T‘l/z Yoy, 11 (Vts — E*(vg,45)) D = Oyp(ky/?). Using Jensen’s and
the triangle inequalities, it follows that

1 !
E* | sup |T'2 Y (0p,4s — E*(vp,16))| | S2E° | sup T2 Y o,
re(0,1] s=Bp, +1 re(0,1] s=Bp,+1

ZT_1/2 T-1 1
= = Z Sup Z Uj+5

_l+1] 07€(0,1] [s=By, +1
2T71/2 T-1 j+l

< —— max Z Vgl .
T—1+1 imo1sist| 5

The equality is straightforward because Iy, .. ., Iy, are i.i.d. uniformly distributed on {0, ..., T — I'}. The second in-
equality is obvious because for » € [0,1], B € {1,...,1}. Hence to show that E* (supre(o,l] \H2T(1’)|) = Op(kgl/z),

1/2 1
it is sufficient to show that E (kl/ T ZT o Max;<i<; ‘Z]S :l] "

norm inequality (Davidson| (2002} 9.23, p138)), we can write

Vs ) = O(1) by the Markov inequality. Using the

oT-1/2 T-I j+! oT-1/2 T-! j+l
(kl/zl max Z Ug < ké/zil Z max Z [
+1 ¢ R B et T—-1+1 2o ||1sist | S ais

= Z(kol)l/zT*UzK‘P = 2K¥ = O(1).

The second inequality follows from the fact that {v;} is a L, ,s—mixingale of size —1 with uniformly bounded
mixingale constants (see Result. Note that ¥ = 7" ; ¢, < oo because ¢, the mixingale coefficient, is of size
—1.

Next we show that IT;7(r) =7° W, (r). Note that /\’Q"”ZT‘U2 Z%;l Y i (vi,4s — E*(v1, 1)) is asymptoti-
cally equivalent to A’ Q'T_l/ 2(1ko)~1/2 ):[rkO]H Y, (vi,+s — E*(v1,1s)). By rearranging the terms, we can write

[rko]+1 [rko]+1
1/2 Z A Q. 2 <l 12 Z UIH1+5 E.(vln1+5))> = Z kal/zvm’
=1 s=1 m=1

where V,, = A'Q31/2 (171/2 Yy (On4s — E'(vl,,l+5))). Here V,, is an array of independent variables with E*(V,,) =
0 and

s=1

1
Var* (Vi) = A'Q5 2 Var® (l” 2Y (s — E.(vaJrs))) Q3 /2A
=NOV205057 12 = 1. (SA.7)

We use a FCLT for martingale difference arrays. Note that k, 2y, isa martingale array with respect to the o-field
Frm-1 =0(l,..., I,—1) given the independence of V,,. First, we can show that as k) — oo,

[TkgH’l
ar® ( Y kgl/z\\/m> - [rk(}(];l S (SA.8)

m=1

This is straightforward by (SA.7) and the fact that V,, is independent. Next, we show that

p lim Z E® |k UZV

koﬁoo

[rko]+1 245
’ —0. (SA.9)
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implies that the Lindeberg condition holds in probability. Since O} = O,(1), it is sufficient to show that

[rk0]+l 2+
Z E*® |k -0

by the Markov inequality. Note that
246 Vk(]]+1
— 7-(+9)/2E Z E*

[I’ko +1
Y B
[k
<27 (/2 ( i Z Ul +s

2T (246)/2 [rkol+1T~1 (

i1 b F

o2 1/22 (V145 = E*(01,45))
s=1

!

Z UIWH’S - vlm+5)>

2T (2+0)/2 ko] +1 T

I (249)/
< Z K2 o2+ (Z Ct)
—I+1 m=1 j=0 t=1

1/21 12 Z vlnz+5 - E.(vlnﬁ’s))

s=1

2+5)

27— (2+8)/2 Ir

1T—1]
1(2+6)/2
S ToIr1 2 ;

= 2ky P2 ([rko] + 1)K’

-0 (k55/2) -0 ((;)m> = o(1).

The first inequality follows from Jensen’s and the triangle inequalities. The second inequality is straightforward
because {v:} is a Ly, s—mixingale of size —1 with uniformly bounded mixingale constants (see Result[2) and
therefore Lemman applies. ¥ = Y, ¥ < co because {v;} is mixingale of size —1 which implies that K’ < co.
Therefore under given assumptlons (SA.8) and (SA.9) are satisfied. By applying a FCLT for martingale difference

arrays, it follows that ), ™ rko I+ ky 2y, = W(r). O

Proof of Theorem[SA1t If we show that

1. T- Z[rT xpxp’ =P rQ*® for some Q® and

[rT] o

2. T2 0p =P° A*Wj(r) for some A®

are true under Assumption R’ with Assumption R’ 3-5 strengthened to Assumption R” 3-5, W will have the usual
fixed-b limit given by Kiefer and Vogelsang (2005). Especially we want to prove that (1) T~} Zifl] xpxp =P rQand
() T7-1/2 ngl] vf =P" A*Wj(r) where A®* = A; when [ is fixed and A®* = A when! — oo, 2/T — 0. A and A, are
defined in LemmalSA7l

First we show that T~ Z[VT xpxy! =" rQ. We can write

[rT] [rT]
1 Z xPxp — % Yo (xfxp’ — E* (xpx') + E® (xPxp') — xexp 4 xpxp) — rQ‘
=1
1 [rT] (] o/ [ ] eo_eo/ 1 [rT] [ ] eo_eo/ A [rT]
< |7 L (i = B (7)) | + |7 L (B (k) —xixt) | + foxt
=1 t=1

We can show that the first term converges to 0 in probability uniformly in » using Lemma Since x; and a; are
weakly stationary x; is also weakly stationary. Note that under Assumption R’, {x;x; — E(x;x})} is L,—mixingale

12



of size —1 with uniformly bounded mixingale constants (see Result[I). Since the mixingale coefficient is of size
—1, Y1 m < oo. Also Assumption R'1 implies that ||x;x}||, < A,r > 2 by Holder’s inequality (Davidson| (2002,
9.21, p138)). Therefore the conditions required for Lemma|SA5|are satisfied and we have

( sup
rel0,1]

Assumption R’ implies Assumption R. Therefore we have

( sup
rel0,1]

1 [rT]
f2<x:xr’— (x132"))

> 17) =0p(1).

’7) = 0p(1).

Z xtxt

We are left with proving

[rT]
P < sup Y (E® (xfxf) — xxt)| > 17) p(1)
ref0,1] =
To show this, we write as
1 [rT} ! / 1 [rT] !/ ! / !
sup |— Z (E® (xfxf') — x¢x;)| = sup T Z (E® (xfxp" — E(xexp)) — (xexp — E (xex1)))
re(0,1] t=1 rel0,1] t=1
1 [rT] 1 [rT]
< sup | Y E* (xfx}' — E(xixp))| + sup 7 Z (xexp — E(xexp))
refoa] |t =1 rel01] | © =1

using the triangle inequality. Note that

Iir(r) = sup | ZE° xpx} (xtxt))|
rel0,1]
1§ Mol y , ,
= Sup |— Z Z E* (xIerSxIers E(xfxt)) T Z E* (XIM,+SxIM,+s - E(xixt)>
rel0,1] m 1s= s=Bpp, +1
1 My / 1 l o / /
< sup 135 56 agtf EunD) |+ sup |1 % B (s, - B
rel0,1] m 1s= rel0,1] s=Bp,+1

Using Jensen’s inequality, we can write the second term as

rel0,1] s=B,+1 re(0,1] s=B,+1

1 ! ° / / ° 1 l / /
sup | Y E (xIM,+stMr+s_E(xtxt)) < E°| sup = ) (xIM,+stMr+s_E(xtxt>> ,

which in turn can be shown to be

. 1§ : , [
E|E*| sup T Z (for+SxIM,+S - E(xtxt)> =0 - | = o(1).
re[01] | © s=Byp;, +1

For details, see in the proof of Lemmal[SA5
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For the first term, we can write

sup Z ZE Xpp4sX], 16 — E(xtxi))‘ = sup

1 M, 1
Z 7 Z xIersters E(xx;))
rel0,1] m 1s= 0 m=1"s=1

1

< % Z sup Z xlm sters E(xtxt))‘

m=1re[0,1]

1 .
7 Z{ E <X11+5X/11+5 - E(xtx§)> | )
S=

IN

The first inequality uses the triangle inequality. The second inequality follows from the fact that M, < ko, {I;} is
i.i.d. uniformly distributed on {0, ..., T — I}. Note that we can write (see|Fitzenberger (1997))

! T
E* (} 2 (X1ptsX], s — E(x,pcé))) = % 2 (xexr — E(x¢xp)) 4+ Op <;) )

s=1 t=1

Because x;x; — E(x;x}) is L,—mixingale of size —1 with uniformly bounded mixingale constants (see Result,
applying Lemma|SA4} we can write

T

E|Y " (xexy — E(xpxp)) | <

t=1

T T 1/2
Z (xex¢ — E(xexp)) || < KY (Z c?) =0 <T1/2) )
t=1 2

t=1

Therefore
1T
TZ xpxp — E(xx})) = Op(T71/?) (SA.10)

by Markov inequality and we have

1
B (} Y (1, ethy s — E(mé))) =0,(11%)+0, (1) =op(0).

Hence, I1;7(r) = oy (1) in probability. By (SA:I0), it is straightforward to show that TTr7(r) = O,(T~1/2) = 0,(1)
which completes the proof of the first condition.

Now we prove the second condition. Given our definitions for vj, and v}, we can write

of =0 — i (B—B),

which implies that

~

[rT] ) (rT] [rT] rT)

A e =T b B )+ T B el - T Dt (B p)

=1 t=1 t=1
= Z7(r) + 37 (r) — TI57 (7).

First note that Z$.(1) =" A*W;(r) by Lemma Thus we are done if we show that sup, . [T, (r) = I3, (r)| =
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0p+ (1) in probability. Note that

[rT] [rT]
. ° -1 . . . o/ p o/ f . o o
7 (r) = T157(r) = T2 2 E® (xf (yf —xP'B+xi'B—xi'B)) — T 2 th xt/ -
t=1
) )
=T Y B 67 (- B) T B (et ) - T zx;x;'

rT) [rT]

STELE )~ T L (73 = E° (7)) (B p)

It is sufficient to show that sup, (o ;] [T7(7)] ) and sup, (o 4] |T37(r)| = 0p+(1) in probability by the triangle

inequality. We first prove thatsup, .y, T3 ) ( ). We can write

T57(r) 2 E* (0})

= % Z ZE vl}n"‘s

m=1s=

1
— 7% Z ZE 'U[m_|_s — T Z E. (ﬁIMr-FS)

m=1s= s=By, +1

Nl—=

= it — Hors

where M, = [('TI-1)/i] + 1, B = min{l, [rT] — (m — 1)I}, and By;, = [rT] — (M, — 1)I. Recall that M, € {1,...,ko},
Be{l,...,1},and I, ..., I, arei.id. uniformly distributed on {0, 1,..., T —[}. To show SUP,c(o1 lpr(r)] = 0p(1),
we write as

. _1
sup [uir(r)| = sup |[T72 ) ) E*(d1,+s)
rel0,1] rel0,1] m=1s=1
o1l .
_r?&ﬁ] 1/2) 2 Z E (l Z%H)
, m=1 s=1

_1
< 11/2kO Z sup
rel0,1] m=1

1/
E. 7 Z ﬁIl +s .
s=1
The first inequality uses the triangle inequality. The last inequality follows from the fact that M, < k. Note that
(1, 1L I !
: (l Z) =150 (r)=or(r)
s= =

See [Fitzenberger| (1997, MBB-lemma A.1) for details. The second equality follows from the fact that .., ; = 0.
Hence,

S ll/Zk(l)/Z

I
swnrun:o()zom.
epq] T PAT2 b

Note that O, <T1/2) = 0p(1) when [ is either fixed or [ — oo, /T — 0.

Next we show that sup, o1 |#37| = 0p(1). In fact we will show that sup, o 1y |37 = Op (kg 1/2) which implies
SUpP,.c(o1] |57 = 0p(1) for both I fixed and I2/T — 0, ] — oo. By the the Markov inequality, it is sufficient to show
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that E (Supre[o,l] |1y D = O(k,/?). First note that we can write

1
o _1 o [ A
mirl =172 Y E*(01,4)
S:BMrJrl
1 . , 4
=T 2 E (UIM,JrS_le,JerIM,—&-s(ﬁ_ﬁ))
S:BMr+1
1 ! 1 ! , A
<72 Y B (o) | |7 L E (xiyrexty, ) | [VT(B—B)|.
s=Bp, +1 s=Bg, +1

Therefore,

1

I
. o . 1 ) )
sup [p3r| < sup (T2 ) E (UIMVJFs) + sup | Y E (xIMr+Sx/IMr+S) ’ﬁ(ﬁ—ﬁ)‘.
rel0,1] rel0,1] s=Bp,+1 rel0,1] s=B,+1

1
_1
T2 v E(on,4)
s=Bp, +1

-1/2

To show thatsup, o 1) [157| = Op(ky/?), itis sufficient to show thatsup, g = 0,(ky 12

!

1 °
andsupre[m 7 L E (xIM,+stM,+s’)
S=BM7+1

sufficient to show that

= 0,(ky/?) because VT (B — B) = Op(1). By Markov inequality, it is

!
E (k(l)/Z sup Tf% 2 E* (UIM,,Jrs) ) = O(l) and (SA.11)
rel0,1] s=Bp,+1
1/2 1 ¢ . /
(k2 sup |= 3 E* (x1,4%, 1) | | =001) (SA.12)
re0A] |1 s=Bay, +1

First we show (SA.11). Note that

1 1 T-1
1/2 —1 . _ 1/2 —1 1
’ (ko rzl[lopl] r szZ: E (UIMY+S) ) R A 72 T—1+1 Z ot )
2 =By, +1 rel0,1] s=Bp, +1 j=0

/23 11 !
<E|X2 Z sup Z Vjts

T-1+1 j=07r€[0,1] |s=Bpy, +1

1y ‘
k2T1-2 T-! j+
<E|-"— 2 max Us
Tfl+1j201§1§l STt
1 ,
k2T—7 T—1 ]+l
<0 Y lmax| Y o (SA.13)
T—-1+1 20 |11t S 2is
S |
kyT—2

T-1
<0 172 — ,
_T—l+1]§)ml o(1)

The first equality is by the definition of E*®. Recall that {I;} is i.i.d. uniformly distributed on {0,..., T —I}. The
first inequality is trivial by the triangle inequality. The second inequality is obvious because for » € [0,1], B €
{1,...,1}. The third inequality follows from the norm inequality (Davidson (2002, 9.23, p138)). Also note that
under Assumption R”, {v;} is a L, s—mixingale of size —1 with uniformly bounded mixingale constants (see
Result[2). Then, applying Lemma the fourth inequality immediately follows. Furthermore, the mixingale
coefficient being of size —1 implies that¥ = Y77 _; ¢, < 0.
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Next we show (SA.12). Following the same steps used to show (SA.13), we can write

1 .
E (k(l)/z sup f E (xIMr+SxIMr+3,) )
T’E[O,l] S:BMrJrl
< max XjisX;
> — C j+sXit
T(T—1+1) Z |1=ist |5, Jre )
ké =l AL / / ’
= max XjysXiis — E(xexy) + E(xexy)
T(T—141) = ||1=ist S_;ﬂ.( jHstjts t t ) ,
0 — & / / kél S !
<e——— max XjysXi s — E(xpxy) + E(x;x})
T(T—-1+1) ;3 1<i<I S§i<1+s jts f) , T(T—l—l—l)];) t
1 1
k2 T-I 1 k21 T-1
0 5 0 /
< K¥I2 + =0 Y E(xx})
T(T—l+1)]§) T(T—l+1)]§) f
(kol)l/z k1/2l
Ky T + 7’1’ E(x:x})

—O(T"V2) + 0 <<;>1/2> |

The second inequality follows from the Minkowski inequality (Davidson| (2002, 9.27, p139)). Note that {xtxg —
E(x¢x})} is Ly—mixingale of size —1 with uniformly bounded mixingale constants (see Result . Thus, using

Lemma the third inequality follows immediately. The first term is O(T~1/2) = o(1). The second term is
O((1/T)"#) = o(1) because is either fixed or increasing slower than T. Hence we have shown that sup, [0,1] o] =

op(1).
So far we have sup, o 1) |#97(r)| = 0p(1) and sup, (o 1) |57 (r)| = 0,(1), which implies thatsup, o ) [[77(r)| =
0p(1). We are left with proving sup, g ;] [T57(7)| = ope (1). We can write

[T

(] l e_0 e, .0
sup |[[37(r)| = sup (T2 Z xtxt/_ xtxt, ‘|ﬁ /3’
rel0,1] rel0,1] t=1
1 [rT]
= sup | (xfxp’ — E® (xfx7")) ‘\fﬁ [3’
re(0,1] t=1

We know that ’\/T(ﬁ — ,8)‘ = Op(1). From Lemma|SA5; sup, (o | ’T Zt 1 (xt’xt" E* (xt’xt"))‘ = 0p(1). Hence
SUP,c(01] T3 (r)| = 0ps (1), which completes the proof of Theorem|SA1 O
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