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Abstract

In the usual stochastic frontier model, all firms are inefficient, because inefficiency is non-negative

and the probability that inefficiency is exactly zero equals zero. We modify this model by adding a

parameter p which equals the probability that a firm is fully efficient. We can estimate this model by MLE

and obtain estimates of the fraction of firms that are fully efficient and of the distribution of inefficiency

for the inefficient firms.

This model has also been considered by Kumbhakar et al. (2012). We extend their paper in several

ways. We discuss some identification issues that arise if all firms are inefficient or no firms are inefficient.

We show that results like those of Waldman (1982) hold for this model, that is, that the likelihood has

a stationary point at parameters that indicate no inefficiency and that this point is a local maximum if

the OLS residuals are positively skewed. We consider the case that a logit or probit model determines

the probability of full efficiency in terms of some observable variables. Finally, we consider problems

involved in testing the hypothesis that p = 0.

We also provide some simulations and an empirical example.
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1 INTRODUCTION

In the basic stochastic frontier model of Aigner et al. (1977) and Meeusen & van den Broeck (1977),

all firms are inefficient to some degree. The one-sided error that represents technical inefficiency has a

distribution (for example, half normal) for which zero is in the support, so that zero is a possible value,

but it is still the case that the probability is zero that a draw from a half normal exactly equals zero. This

may be restrictive empirically, since it is plausible, or at least possible, that an industry may contain a set

of firms that are fully efficient.

In this paper we allow the possibility that some firms are fully efficient. We introduce a parameter p

which represents the probability that a firm is fully efficient. So the case of p = 0 corresponds to the usual

stochastic frontier model and the case of p = 1 corresponds to the case of full efficiency (no one-sided

error), while if 0 < p < 1 a fraction p of the firms are fully efficient and a fraction 1− p are inefficient. This

may be important because if some of the firms actually are fully efficient, the usual stochastic frontier model

is misspecified and can be expected to yield biased estimates of the technology and of firms’ inefficiency

levels.

This model is a special form of the latent class model considered by Caudill (2003), Orea & Kumbhakar

(2004), Greene (2005) and others. It has the special feature that the frontier itself does not vary across the

two classes of firms; only the existence or non-existence of inefficiency differs. Our model has previously

been considered by Kumbhakar, Parmeter & Tsionas (2012), hereafter KPT. See also Grassetti (2011). Our

results were derived without knowledge of the KPT paper, but in this paper we will naturally focus on our

results which are not in their paper.

The plan of the paper is as follows. In Section 2 we will present the model and give a brief summary of

the basic results that are also in the KPT paper. These include the likelihood to be maximized, the form of

the posterior probabilities of full efficiency for each firm, and the expression for the estimated inefficiencies

for each firm. In Section 3 we provide some new results. We discuss identification issues. We give the

generalization of the results of Waldman (1982), which establish that there is a stationary point of the

likelihood at a point of full efficiency and that this point is a local maximum of the likelihood if the OLS

residuals are positively skewed. We propose using logit or probit models to allow additional explanatory

variables to affect the probability of a firm being fully efficient. We also discuss the problem of testing the

hypothesis that p = 0. In Section 4 we present some simulations, and in Section 5 we give an empirical

example. Finally, Section 6 gives our conclusions.
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2 THE MODEL AND BASIC RESULTS

We begin with the standard stochastic frontier model of the form:

(1) yi = x′iβ + ε i, ε i = vi − ui, ui ≥ 0.

Here i = 1, . . . , n indexes firms. We have in mind a production frontier so that y is typically log output and

x is a vector of functions of inputs. The vi are iid N
(
0, σ2

v
)
, the ui are iid N+

(
0, σ2

u
)

(i.e., half-normal), and

x, v, and u are mutually independent (so x can be treated as fixed). We will refer to this model as the basic

stochastic frontier (or basic SF) model.

We now define some standard notation. Let φ be the standard normal density, and Φ be the standard

normal cdf. Let fv and fu represent the densities of v and u :

fv (v) =
1√

2πσv
exp(− v2

2σ2
v
) =

1
σv

φ

(
v
σv

)
,(2a)

fu (u) =
2√

2πσu
exp(− u2

2σ2
u
) =

2
σu

φ

(
u
σu

)
, u ≥ 0 .(2b)

Also define λ = σu/σv and σ2 = σ2
u + σ2

v . This implies that σ2
v = σ2/(1 + λ2) and σ2

u = σ2λ2/(1 + λ2). Finally, we

let fε represent the density of ε = v− u:

fε (ε) =
2
σ

φ
( ε

σ

) [
1−Φ

(
ελ

σ

)]
.(3)

Now we define the model of this paper. Suppose there is an unobservable variable zi such that

zi = 1 (ui = 0) =


1 if ui = 0

0 if ui > 0 .
(4)

Define p = P (zi = 1) = P (ui = 0). We assume that ui |zi=0 is distributed as N+(0, σ2
u), that is, half normal.

Thus

ui =


0 with probability p

N+
(
0, σ2

u
)

with probability 1− p .
(5)

This model contains the parameters β, σ2
u , σ2

v , and p or β, λ, σ2, and p.
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We will follow the terminology of KPT and call this model the ”zero-inefficiency stochastic frontier”

(ZISF) model. The name refers to the fact that, in this model, the event ui = 0 can occur with non-zero

frequency. Note that

f (ε|z = 1) = fv (ε) ,(6a)

f (ε|z = 0) = fε (ε) ,(6b)

(where fv and fε are defined in (2a) and (3) above) and so the marginal (unconditional) density of ε is

fp (ε) = p fv (ε) + (1− p) fε (ε) .(7)

Using this density, we can form the (log) likelihood for the model:

ln L
(

β, σ2
u , σ2

v , p
)

=
n

∑
i=1

ln fp
(
yi − x′iβ

)
.(8)

We will estimate the model by MLE; that is, by maximizing ln L with respect to β, σ2
u , σ2

v , and p. Or,

alternatively, the model may be parameterized in terms of β, λ, σ2, and p, with maximization over that

set of parameters.

When we have estimated the model, we can obtain ε̂ i = yi − x′i β̂, an estimate of ε i = yi − x′iβ. Us-

ing Bayes rule, we can now update the probability that a particular firm is fully efficient, because ε i is

informative about that possibility. That is, we can calculate

P (zi = 1|ε i) =
P (zi = 1) f (ε i|zi = 1)

fp (ε i)
=

p fv (ε i)

fp (ε i)
=

p fv (ε i)

p fv (ε i) + (1− p) fε (ε i)
.(9)

We will call this the “posterior” probability that firm i is fully efficient. It is evaluated at p̂, ε̂ i and also

σ̂2
u and σ̂2

v , which enter into the densities of fv and fε. We put quotes around ”posterior” because it is

not truly the posterior probability of zi = 1 in a Bayesian sense. (A true Bayesian posterior would give

P (zi = 1|yi, xi) and would have started with a prior distribution for the parameters β, σ2
u , σ2

v , and p.)

We now wish to estimate (predict) ui for each firm. Following the logic of Jondrow et al. (1982), we

define ûi = E (ui|ε i). Now

E (ui|ε i) = Ez|εE (ui|ε i, zi)(10)

= P (zi = 1|ε i) E (ui|ε i, zi = 1) + P (zi = 0|ε i) E (ui|ε i, zi = 0)
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= P (zi = 0|ε i) E (ui|ε i, zi = 0)

since ui ≡ 0 when zi = 1. But E (ui|ε i, zi = 0) is the usual expression from Jondrow et al. (1982), and

P (zi = 0|ε i) = 1− P (zi = 1|ε i) which can be evaluated using equation (9) above. Therefore,

ûi = E (ui|ε i) =
(1− p) fε (ε i)

p fv (ε i) + (1− p) fε (ε i)
× σ∗

[
φ (ai)

1−Φ (ai)
− ai

]
,(11)

where ai = ε iλ/σ and σ∗ = σuσv/σ = λσ/(1 + λ2).

A slight extension of this result, which is not in KPT, is to follow Battese & Coelli (1988) and define

technical efficiency as TE = exp (−u). Correspondingly technical inefficiency would be 1 − TE = 1 −

exp (−u), which is only approximately equal to u (for small u). They provide the expression for E (TE|ε).

Using our ”posterior” probability P (zi = 1|ε i) and their expression for E (TEi|ε i, zi = 0), we obtain

T̂Ei = E
(
e−ui |ε i

)
(12)

=
(1− p) fε (ε i)

p fv (ε i) + (1− p) fε (ε i)
×

Φ
(

µ∗i
σ∗
− σ∗

)
Φ
(

µ∗i
σ∗

) exp(
σ2
∗

2
− µ∗i ) +

p fv (ε i)

p fv (ε i) + (1− p) fε (ε i) ,

where µ∗i = −ε iσ
2
u/σ2, σ∗ = σuσv/σ (as above), and correspondingly µ∗i /σ∗ = −ai where ai = ε iλ/σ (as above).

As in Jondrow et al. (1982), the expression in either (11) or (12) would need to be evaluated at the

estimated values of the parameters (p, σ2
u , and σ2

v ) and at ε̂ i = yi − x′i β̂.

3 EXTENSIONS OF THE BASIC MODEL

We now investigate some extensions of the basic results of the previous section. Most of the results in this

section are not in KPT.

3.1 Identification Issues

Some of the parameters are not identified under certain circumstances. When p = 1, so that all firms are

fully efficient, σ2
u is not identified. Conversely, when σ2

u = 0, p is not identified. In fact, the likelihood value

is exactly the same when (i) σ2
u = 0, p = anything as when (ii) p = 1, σ2

u = anything. More generally, we

might suppose that σ2
u and p will be estimated imprecisely when a data set contains little inefficiency, since
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it will be hard to determine whether there is little inefficiency because σ2
u is small or because p is close to

one.

This issue of identification is relevant to the problem of testing the null hypothesis that p = 1 against the

alternative that p < 1. This is a test of the null hypothesis that all firms are efficient against the alternative

that some fraction (possibly all) of them are inefficient, and that is an economically interesting hypothesis.

KPT suggest a likelihood ratio test of this hypothesis. As they note, the null distribution of their statistic

is affected by the fact that the null hypothesis is on the boundary of the parameter space. They refer to

Chen & Liang (2010), Case 2, p. 608 to justify an asymptotic distribution of 1/2χ2
0 + 1/2χ2

1 for the likelihood

ratio statistic. However, it is not clear that this result applies, given that one of the parameters (σ2
u) is not

identified under the null that p = 1. Specifically, the argument of Chen & Liang (2010) depends on the

existence and asymptotic normality of the estimator η̂(γ0) [see p. 606, line 4] where γ0 corresponds to

p0(= 1), and where η corresponds to the other parameters of our model, including σ2
u .

A more relevant reference, which KPT note but do not pursue, is Andrews (2001). This paper explicitly

allows the case in which the parameter vector under the null may lie on the boundary of the maintained

hypothesis and there may be a nuisance parameter that appears under the alternative hypothesis, but not

under the null. See his Theorem 4, p. 707, for the relevant asymptotic distribution result, which unfortu-

nately is considerably more complicated than the simple result (50-50 mixture of chi-squareds) of Chen &

Liang (2010).

3.2 A Stationary Point for the Likelihood

For the basic stochastic frontier model, let the parameter vector be θ = (β′, λ, σ2)′. Then Waldman (1982)

established the following results. First, the log likelihood always has a stationary point at θ∗ = (β̂′, 0, σ̂2)′,

where β̂ =OLS and σ̂2 =(OLS sum of squared residuals)/n. Note that these parameter values correspond

to σ̂2
u = 0, that is, to full efficiency of each firm. Second, the Hessian matrix is singular at this point. It is

negative semi-definite with one zero eigenvalue. Third, these parameter values are a local maximizer of

the log likelihood if the OLS residuals are positively skewed. This is the so-called ”wrong skew problem”.

The log likelihood for the ZISF model has a stationary point very similar to that for the basic stochastic

frontier model. This stationary point is also a local maximum of the log likelihood if the least squares

residuals are positively skewed.
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Theorem 1. Let θ = (β′, λ, σ2, p)′ and let θ∗∗ = (β̂′, 0, σ̂2, p̂)′, where β̂ =OLS, σ̂2 =(OLS sum of squared

residuals)/n, and where p̂ is any value in [0, 1]. Then

1. θ∗∗ is a stationary point of the log likelihood.

2. The Hessian matrix is singular at this point. It is negative semi-definite with two zero eigenvalues.

3. θ∗∗ with p̂ ∈ [0, 1) is a local maximizer of the log likelihood function if and only if ∑n
i=1 ε̂3

i> 0, where

ε̂ i = yi − x′i β̂ is the OLS residual.

4. θ∗∗ with p̂ = 1 is a local maximizer of the log likelihood function if ∑n
i=1 ε̂3

i> 0.

Proof : See Appendix 1.

As is typically done for the basic stochastic frontier model, we will presume that θ∗∗ is the global max-

imizer of the log likelihood when the residuals have positive (”wrong”) skew. Note that at θ∗∗, we have

λ̂ = 0 or equivalently σ̂2
u = 0, and p is not identified when σ2

u = 0. We get the same likelihood value for

any value of p. In our simulations (in Section 4) we will set p̂ = 1 in the case of wrong skew, since p̂ = 1 is

another way of reflecting full efficiency. However, for a given data set, the value of p̂ does not matter when

θ = θ∗∗.

Since plim
(
(1/n)∑ ε̂3

i

)
= E (ε i − E (ε i))

3 = σ3
u
√

2/π (1− p)
(
−4p2 + (8− 3π)p + π − 4

)
/π ≤ 0 for

any p ∈ [0, 1], as the number of observations increases, the probability of a positive third moment of the

OLS residuals goes to zero asymptotically. In a finite sample, the probability of a positive third moment

increases when λ is small and/or p is near 0 or 1. See Table 1 below. The entries in Table 1 are based on

simulations with 100, 000 replications, with σu = 1, λ = σu/σv, λ ∈ {0.5, 1, 2}, and p ∈ {0, 0.1, . . . , 0.9},

for sample sizes 50, 100, 200, and 400.

3.3 Models for the Distribution of ui

The ZISF model can be extended by allowing the distribution of ui to depend on some observable

variables wi. For example, in our empirical analysis of Section 5, the wi will include variables like the

age and education of the farmer and the size of his household. These variables can be assumed to affect

either P(zi = 1) or f (ui|zi = 0) or both.
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Table 1: Frequency of a positive third moment of the OLS residuals

n = 50 n = 100 n = 200 n = 400
λ = 0.5 λ = 1 λ = 2 λ = 0.5 λ = 1 λ = 2 λ = 0.5 λ = 1 λ = 2 λ = 0.5 λ = 1 λ = 2

p = 0 0.476 0.363 0.114 0.463 0.300 0.038 0.447 0.224 0.006 0.421 0.139 0.000
p = 0.1 0.475 0.352 0.102 0.460 0.286 0.031 0.443 0.210 0.003 0.416 0.123 0.000
p = 0.2 0.472 0.338 0.080 0.456 0.266 0.019 0.438 0.185 0.001 0.407 0.101 0.000
p = 0.3 0.469 0.322 0.058 0.451 0.245 0.011 0.431 0.161 0.000 0.398 0.079 0.000
p = 0.4 0.466 0.308 0.042 0.447 0.226 0.006 0.424 0.141 0.000 0.391 0.062 0.000
p = 0.5 0.465 0.300 0.034 0.444 0.215 0.004 0.421 0.129 0.000 0.386 0.053 0.000
p = 0.6 0.466 0.299 0.033 0.445 0.215 0.004 0.420 0.128 0.000 0.387 0.052 0.000
p = 0.7 0.468 0.311 0.043 0.449 0.229 0.006 0.427 0.143 0.000 0.394 0.063 0.000
p = 0.8 0.474 0.342 0.076 0.458 0.268 0.017 0.439 0.185 0.001 0.414 0.098 0.000
p = 0.9 0.485 0.399 0.178 0.474 0.348 0.079 0.463 0.280 0.019 0.446 0.200 0.001

First consider the case in which we assume that wi affects the distribution of ui for the inefficient firms. A

general assumption would be that the distribution of ui conditional on wi and on zi = 0 is N+(µi, σ2
i ) where

µi and/or σ2
i depend on wi. For example, in Section 5 we will assume the RSCFG model of Reifschneider &

Stevenson (1991), Caudill & Ford (1993) and Caudill et al. (1995), under the specific assumptions that µi = 0

and σ2
i = exp (w′iγ). Another possible model is the KGMHLBC model of Kumbhakar et al. (1991), Huang

& Liu (1994) and Battese & Coelli (1995), with σ2
i = σ2

u constant and with µi = w′iψ or µi = c exp (w′iψ).

Wang (2002) proposes parameterizing both µi and σ2
i . See also Alvarez et al. (2006).

A second and more novel case is the one in which we assume that wi affects P(zi = 1). For example, we

could assume a logit model:

P (zi = 1|wi) =
exp (w′iδ)

1 + exp (w′iδ)
.(13)

A probit model would be another obvious possibility.

Finally, we can consider a more general model in which both P(zi = 1|wi) and f (ui|zi = 0, wi) depend

on wi, as above. We will estimate such a model in our empirical section.

3.4 Testing the Hypothesis That p = 0

In this section, we discuss the problem of testing the null hypothesis H0 : p = 0 against the alternative

HA : p > 0. The null hypothesis is that all firms are inefficient, so the basic stochastic frontier model

applies. The alternative is that some firms are fully efficient and so the ZISF model is needed.

It is a standard result that, under certain regularity conditions, notably that the parameter value speci-

fied by the null hypothesis is an interior point of the parameter space, the likelihood (LR), Lagrange mul-
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tiplier (LM), and Wald tests all have the same asymptotic χ2 distribution. However, in our case p cannot

be negative, and therefore the null hypothesis that p = 0 lies on the boundary of the parameter space.

This is therefore a non-standard problem. Unlike the case of testing the hypothesis that p = 1, however,

there is no problem with the identification of the other parameters (nuisance parameters) β, σ2
u , and σ2

v , or

β, λ, and σ2. We need to restrict σ2
u > 0 and σ2

v > 0 so that the nuisance parameters are in the interior of

the parameter space, and also because p would not be identified if σ2
u = 0. However, with these modest

restrictions, this is only a mildly non-standard problem, which has been discussed by Rogers (1986), Self &

Liang (1987), and Gouriéroux & Monfort (1995) chapter 21, for example.

We consider five test statistics: the likelihood ratio (LR), Wald, Lagrange multiplier (LM), modified

Lagrange multiplier (modified LM), and Kuhn-Tucker (KT) tests. All of these except the LM test will have

asymptotic distributions that are different from the usual (χ2
1) distribution.

We will assume that the likelihood function Ln(θ) satisfies the usual conditions,

1√
n

∂Ln(θ0)

∂θ

d→ N (0, I0) ,

1
n

∂2Ln(θ0)

∂θ∂θ

p→ H0 = −I0,

where θ = (β
′
, σu, σv, p)′, and the parameters other than p are away from the boundary of their parameter

spaces. Define the restricted estimator (θ̃) and the unrestricted estimator (θ̂):

θ̃ = argmax
σu≥0, σv≥0, p=0

ln Ln(θ),

θ̂ = argmax
σu≥0, σv≥0, 0≤p≤1

ln Ln(θ) .

We also define li = ln f (ε i), ŝi = ∂li(θ̂)/∂θ, s̃i = ∂li(θ̃)/∂θ, ĥi = ∂2li(θ̂)/∂θ∂θ′, and h̃i = ∂2li(θ̃)/∂θ∂θ′.

Finally, we consider the ”unconstrained” estimator (θ̌) that ignores the logical restriction 0 ≤ p ≤ 1 :

θ̌ = argmax
σu≥0, σv≥0

ln Ln(θ) .

3.4.1 LR test

The LR statistic when testing H0 : p = 0 is ξLR = 2(ln Ln(θ̂) − ln Ln(θ̃)). Under standard regularity

conditions, the asymptotic distribution of ξLR is a mixture of χ2
0 and χ2

1, with mixing weights 1/2, where χ2
0

is defined as the point mass distribution at zero. That is ξLR d→ 1/2χ2
0 + 1/2χ2

1. This follows, for example,

9



from Chen & Liang (2010), as cited by KPT.

3.4.2 Wald test

The Wald statistic for H0 : p = 0 is ξW = p̂2/se ( p̂)2. Note that se( p̂)2 can be computed using the outer

product of the score form of the variance matrix of θ̂, [(∑n
i=1 ŝi ŝ′i)

−1], the Hessian form, [(∑n
i=1−ĥi)

−1], or

the Robust form, [(∑n
i=1−ĥi)

−1(∑n
i=1 ŝi ŝ′i)(∑

n
i=1−ĥi)

−1]. As with the LR statistic, ξW d→ 1/2χ2
0 + 1/2χ2

1. Note

that the non-standard nature of this result means that the ”significance” of an estimated p̂ from the ZISF

model cannot be assessed using standard results.

3.4.3 LM test

The LM statistic for H0 : p = 0 is ξLM = (∑n
i=1 s̃i)

′M̃−1(∑n
i=1 s̃i). M̃ can be either [(∑n

i=1 s̃i s̃′i)] or

[(∑n
i=1−h̃i)], in either case evaluated at θ̃. Unlike the other statistics considered here, the LM statistic

has the usual χ2
1 distribution. It ignores the one-sided nature of the alternative, because it rejects for a large

(in absolute value) positive or negative value of s̃i. As pointed out by Rogers (1986), this may result in a loss

in power relative to tests that take the one-sided nature of the alternative into account.

3.4.4 Modified LM test

The LM statistic has the usual χ2
1 distribution because it does not take account of the one-sided nature of

the alternative. By taking account of the one-sided nature of the alternative, the LM test might have better

power. The Modified LM statistic proposed by Rogers (1986) is motivated by this point. The modified LM

statistic is :

ξmodified LM =


ξLM, if ∑n

i=1 s̃i > 0

0 , otherwise .

In the modified LM statistic, a positive score is taken as evidence against the null and in favor of the

alternative p > 0, whereas a negative score is not. So a negative score is simply set to zero. The asymptotic

distribution of ξmodified LM is 1/2χ2
0 + 1/2χ2

1.

10



3.4.5 KT test

Another form of score test statistic that takes account of the one-sided nature of the alternative is the

KT statistic proposed by Gouriéroux et al. (1982). The KT statistic for H0 : p = 0 is ξKT = (∑n
i=1 s̃i −

∑n
i=1 ŝi)

′M̃−1(∑n
i=1 s̃i −∑n

i=1 ŝi), where M̃ can be either ∑n
i=1 s̃i s̃′i or ∑n

i=1−h̃i. When p̂ = 0 , ∑n
i=1 s̃i = ∑n

i=1 ŝi.

Since p̂ = 0 when p̌ ≤ 0, the test statistic will have a degenerate distribution at zero when p̌ ≤ 0. Otherwise,

∑n
i=1 ŝi = 0 and the test statistic has the usual χ2

1 distribution. Therefore, ξKT d→ 1/2χ2
0 + 1/2χ2

1.

3.4.6 The Wrong Skew Problem, Revisited

When the OLS residuals are positively skewed (∑n
i=1 ε̂3

i > 0), we have σ̂2
u = 0 (or equivalently, λ̂ = 0)

and p̂ is not well defined. Also the information matrix, whether evaluated at θ̂ or θ̃, is singular. Specifically,

n

∑
i=1

ŝi ŝ′i =



1
σ̂2

v

n
∑

i=1
ε̂2

i xix′i − (1− p̂)
√

2
π

1
σ̂2

v

n
∑

i=1
ε̂2

i xi
1

σ̂5
v

n
∑

i=1
ε̂3

i xi 0

− (1− p̂)
√

2
π

1
σ̂2

v

n
∑

i=1
ε̂2

i x′i
2
π (1− p̂)2 n

σ̂2
v

− (1− p̂)
√

2
π

1
σ̂5

v

n
∑

i=1
ε̂3

i 0

1
σ̂5

v

n
∑

i=1
ε̂3

i x′i − (1− p̂)
√

2
π

1
σ̂5

v

n
∑

i=1
ε̂3

i
1

σ̂6
v

n
∑

i=1
ε̂4

i −
n
σ̂2

v
0

0 0 0 0



n

∑
i=1

s̃i s̃′i =



1
σ̃2

v

n
∑

i=1
ε̃2

i xix′i −
√

2
π

1
σ̃2

v

n
∑

i=1
ε̃2

i xi
1

σ̃5
v

n
∑

i=1
ε̃3

i xi 0

−
√

2
π

1
σ̃2

v

n
∑

i=1
ε̃2

i x′i
2
π

n
σ̃2

v
−
√

2
π

1
σ̃5

v

n
∑

i=1
ε̃3

i 0

1
σ̃5

v

n
∑

i=1
ε̃3

i x′i −
√

2
π

1
σ̃5

v

n
∑

i=1
ε̃3

i
1

σ̃6
v

n
∑

i=1
ε̃4

i −
n
σ̃2

v
0

0 0 0 0



n

∑
i=1

ĥi =



−
n
∑

i=1

xix′i
σ̂2

v
(1− p̂)

√
2
π

1
σ̂2

v

n
∑

i=1
xi 0 0

(1− p̂)
√

2
π

1
σ̂2

v

n
∑

i=1
x′i − (1− p̂)2 2

π
n
σ̂2

v
0 0

0 0 −2n
σ̂2

v
0

0 0 0 0



n

∑
i=1

h̃i =



−
n
∑

i=1

xix′i
σ̃2

v

√
2
π

1
σ̃2

v

n
∑

i=1
xi 0 0√

2
π

1
σ̃2

v

n
∑

i=1
x′i − 2

π
n
σ̃2

v
0 0

0 0 −2n
σ̃2

v
0

0 0 0 0


.
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All the matrices above are singular for any p̂ ∈ [0, 1]. Therefore, when the third moment of the OLS

residuals is positive, only the LR statistic can be defined, and equals zero. It remains to decide if we

should reject the null hypothesis or not when the OLS residuals have wrong skew. Clearly, the LR test will

not reject the null hypothesis, since the statistic equals zero under wrong skew. But for the other tests, the

statistic is undefined and it is not clear what to conclude. If we consider the wrong skew cases as indicating

that all firms are efficient, then it would be reasonable to reject the null hypothesis. However, as a practical

matter, whether we reject the null hypothesis or not does not affect anything, because the estimated model

whether p = 0 or not collapses to the same model. It might be reasonable to simply say that p is not

identified with incorrectly skewed OLS residuals. For a given data set, both the null and the alternative

hypothesis would lead to same results.

Assuming that σ2
u > 0, the wrong skew problem occurs with a probability that goes to zero asymp-

totically. However, as shown in Table 1, it can occur with non-trivial probability in finite samples. Also,

the discussion above may be relevant even when the data do not have the wrong skew problem. The log

likelihood has a stationary point at θ∗∗ regardless of the skew of the residuals. In the wrong skew case, the

likelihood is perfectly flat in the p direction with β̂ =OLS, λ̂ = 0, and σ̂2 = 1/nSSE. In the correct skew

case, this is not true, but when λ is small, we expect that the partial of log likelihood with respect to p

(evaluated at the MLE of the other parameters) would often be small in the vicinity of p = 0, so that the

LM test and its variants might have low power. We will investigate this issue in the simulations of the next

section.

4 SIMULATIONS

We conducted simulations in order to investigate the finite sample performance of the ZISF model, and

to compare it to the performance of the basic stochastic frontier model. We are interested both in parameter

estimation and in the performance of tests of the hypothesis p = 0.

We consider a very simple data generating process: yi = β + ε i, where as in Section 2 above, ε i = vi − ui

and ui is half-normal with probability 1− p and ui = 0 with probability p. We pick n = 200 and 500, β = 1,

and σu = 1. We consider p = 0, 0.25, 0.5, and 0.75, and λ = 1, 2, and 5 (i.e., σv = 1, 0.5, and 0.2). Our

simulations are based on 1000 replications. Because the MLE’s were sensitive to the starting values used,

we used several sets of starting values and chose the results with the highest maximized likelihood value.

Our experimental design was similar to that in KPT. They included a non-constant regressor, but in our
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experiments that made little difference. A more substantial difference is that we used n = 200 and 500

whereas they used n = 500 and 1000.

There were some technical problems related to the facts that σ2
u is not identified when p = 1, and p is

not identified when σ2
u = 0. We define p̂ = 1 when σ̂u = 0 and σ̂u = 0 when p̂ = 1. This would imply that

when the OLS residuals have incorrect skew, the MLE would be θ∗∗ with p̂ = 1. It was very seldom the

case that σ̂2
u = 0 or p̂ = 1 other than in the wrong skew cases.

4.1 Parameter Estimation

Table 2 contains the mean, bias, and MSE of the various parameter estimates, for the basic stochastic

frontier model and for the ZISF model, for the case that n = 200. We also present the mean, bias, and MSE

of the technical inefficiency estimates, and the mean of the ”posterior” probabilities of full efficiency.

Unsurprisingly, the basic stochastic frontier model performs poorly except when p = 0 (in which case it

is correctly specified). This is true for all three values of λ. We over-estimate technical inefficiency, because

we act as if all firms are inefficient, whereas in fact they are not. This bias is naturally bigger when p is

bigger.

For the ZISF model, the results depend strongly on the value of λ. When λ = 1, the results are not very

good. Note in particular the mean values of p̂, which are 0.53, 0.49, 0.51, and 0.57 for p = 0, 0.25, 0.50, and

0.75, respectively. It is disturbing that the mean estimate of p does not appear to depend on the true value

of p.

These problems are less severe for larger values of λ. The mean value of p̂ when p = 0 is 0.33 for λ = 2

and 0.16 for λ = 5. The estimates are considerably better for the other values of p. So basically the model

performs reasonably well when λ is large enough and p is not too close to zero.

Table 3 is similar to Table 2 except that it reports the results only for the cases of correct skew (i.e., wrong

skew cases are not included). This makes almost no difference for λ = 2 or 5, because there are very few

wrong skew cases when λ = 2 or 5. For λ = 1, it matters more. However, the conclusions given above

really do not change.

Table 4 contains the same information as Table 2, except that now we have n = 500 rather than n = 200.

The results are better for n = 500 than for n = 200, but a larger sample size does not really solve the

problems that the ZISF model has in estimating p when p = 0 and/or λ = 1. For example, when p = 0, the

mean p̂ for λ = 1, 2, 5 is 0.53, 0.33, 0.16 when n = 200 and 0.50, 0.30, 0.12 when n = 500. Reading the table
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in the other direction, when λ = 1, the mean p̂ for p = 0, 0.25, 0.5, 0.75 is 0.53, 0.49, 0.51, 0.57 when n = 200

and 0.50, 0.46, 0.48, 0.58 when n = 500. So again there are problems in estimating p when p = 0 or when λ

is small.

It is perhaps not surprising that we encounter problems when we estimate the ZISF model when the

true value of p is zero. Essentially, we are estimating a latent-class model with more classes than there

really are. It is true that the class with zero probability contains no new parameters. If it did, they would

not be identified and the results would presumably be much worse.

These results do not always agree with the summary of the results in KPT. KPT concentrate on the

technical inefficiency estimates, and the only results they show explicitly for the parameter estimates (their

Figure 3) are for n = 1000, and λ = 5 and p = 0.25. We did successfully replicate their results, but n = 1000

and λ = 5 is a very favorable parameter configuration. In their Section 3.1, they say the following about

the case when the true p equals zero: ”The ML estimator from the ZISF model is found to perform quite

well. . . . Estimates of p were close to zero.” It is not clear what parameter configuration this refers to, but in

our simulations this is not true except when λ = 5. For smaller values of λ, the ZISF estimates of p when

the true p = 0 are not very close to zero.

4.2 Testing the Hypothesis p = 0

We now turn to the results of our simulations that are designed to investigate the size and power prop-

erties of the tests of the hypothesis p = 0, as discussed in Section 3.4 above. This hypothesis is economically

interesting, and it is also practically important to know whether p = 0, since our model does not appear to

perform well in that case. We would like to be able to recognize cases when p = 0 and just use the basic SF

model in these cases.

The data generating process and parameter values for these simulations are as discussed above (in the

beginning of Section 4). Specifically, the simulations are for n = 200 and n = 500.

We begin with the likelihood ratio (LR) test, which is the test that we believed ex ante would be most

reliable. The results for n = 200 are given in Table 5. For each value of λ and p, we give the mean of the

statistic (over the full set of 1000 replications), the number of rejections and the frequency of rejection. The

rejection rates in the rows corresponding to p = 0 are the size of the test, whereas the rejection rates in the

rows corresponding to the positive values of p represent power.
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Look first at the set of results for all replications. The size of the test is reasonable. It is undersized for

λ = 1 and approximately correctly sized for λ = 2 and 5. However, the power is disappointing, except

when λ is large. There is essentially no power, even against the alternative p = 0.75, when λ = 1. When

λ = 2, power is 0.60 against p = 0.75, but only 0.24 against p = 0.50 and 0.06 against p = 0.25. Power is

more reasonable when λ = 5.

Table 6 gives the same results for n = 500. Increasing n has little effect on the size of the test, but it

improves the power. Power is still low when λ = 1 or when λ = 2 and p is not large.

In either case (n = 200 or 500), looking separately at the correct-skew cases does not change our conclu-

sions.

In Tables 7 and 8, we give results for the Wald test, for n = 200 and 500, respectively. Since the Wald

test is undefined in wrong-skew cases, we show the results only for the correct-skew cases. We consider

separately the OPG, Hessian, and Robust forms of the test, as defined in Section 3.4.2. above. Regardless

of which form of the test is used, the test is considerably over-sized. This is true for both sample sizes.

The problem is worst for the Robust form and least serious for the OPG form, but there are serious size

distortions in all three cases. Based on these results, the Wald test is not recommended.

In Tables 9 and 10, we give the results for the score-based tests (LM, modified LM, and KT). Once again

the tests are undefined for wrong-skew cases so we report results only for the correct-skew cases. The

(two-sided) LM test is the best of the three. It shows moderate size distortions and no power when λ = 1,

but only modest size distortions when λ = 2 or 5. The modified LM test has bigger size distortions and

less power when λ = 2 or 5. The KT test has the largest size distortions and is therefore not recommended.

Our results are easy to summarize. The likelihood ratio test is the best of the five tests we have consid-

ered, at least for these parameter values. It is the only one of the tests that does not over-reject the true null

that p = 0. However, it does not have much power. That is, we will have trouble rejecting the hypothesis

that the basic SF model is correctly specified, even if the ZISF model is needed and p is not close to zero.

The exception to this pessimistic conclusion is the case when both p and λ are large, in which case the

power of the test is satisfactory.

5 EMPIRICAL EXAMPLE

We apply the models defined in Sections 2 and 3 to the Philippine rice data used in the empirical exam-

ples of Coelli et al. (2005), chapters 8-9. The Philippine data are composed of 43 farmers over eight years
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and Coelli et al. (2005) estimate the basic stochastic frontier model with a trans-log production function,

ignoring the panel nature of the observations. Their output variable is tonnes of freshly threshed rice, and

the input variables are planted area (in hectares), labor, and fertilizer used (in kilograms). These variables

are scaled to have unit means so the first-order coefficients of the trans-log function can be interpreted as

elasticities of output with respect to inputs evaluated at the variable means. We follow the basic setup of

Coelli et al. (2005) but estimate the extended models where some farms are allowed to be efficient, and the

probability of farm i being efficient and/or the distribution of ui depend on farm characteristics. Data on

age of household head, education of household head, household size, number of adults in the household,

and the percentage of area classified as bantog (upland) fields are used as farm characteristics that influ-

ence the probability of a farm begin fully efficient and/or the distribution of the inefficiency. See Coelli

et al. (2005) Appendix 2 for a detailed description of the data.

5.1 Model

We consider models based on the following specification:

ln yi = β0 + θt + β1 ln areai + β2 ln labori + β3 ln npki(14)

+β11(ln areai)
2 + β12 ln areai ln labori + β13 ln areai ln npki

+β22(ln labori)
2 + β23 ln labori ln npki + β33(ln npki)

2 + vi − ui ,

ui ∼ N+(0, σ2
i ),(15)

σ2
i = exp (γ0 + ageiγ1 + edyrsiγ2 + hhsizeiγ3 + nadultiγ4 + banratiγ5) ,

P(zi = 1|wi) =
exp (δ0 + ageiδ1 + edyrsiδ2 + hhsizeiδ3 + nadultiδ4 + banratiδ5)

1 + exp (δ0 + ageiδ1 + edyrsiδ2 + hhsizeiδ3 + nadultiδ4 + banratiδ5)
,(16)

where areai is the size of planted area in hectares, labori is a measure of labor, npki is fertilizer in kilograms,

agei is the age of household head, edyrsi is the years of education of the household head, hhsizei is the

household size, nadulti is the number of adults in the household, and banrati is the percentage of area

classified as bantog (upland) fields.

We assume a trans-log production function with time trend as in (14). We estimate the following models:

[a] the basic stochastic frontier model, in which σ2
i is constant (≡ σ2

u) and P(zi = 1|wi) = 0;
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[b] the ZISF model in which σ2
u is constant and P(zi = 1|wi) is constant (≡ p) but not necessarily equal to

zero;

[c] the ”heteroskedasticity” model in which p = 0 but σ2
i is as given in (15);

[d] the ”logit” model in which σ2
u is constant but P(zi = 1|wi) is as given in (16);

[e] the ”logit+heteroskedasticity” model in which σ2
i is as given in (15) and P(zi = 1|wi) is as given in

(16).

5.2 The Estimates

The MLEs and their OPG standard errors are reported in Table 11.

Consider first the results for the basic stochastic frontier model (first column of results in the table). The

inputs are productive and there are roughly constant returns to scale. Average technical efficiency is about

70%. The estimated value of λ is 2.75, and both that value and the sample size (n = 344) are big enough to

feel confident about proceeding to the ZISF model and its extensions.

The next block of column of results is for the ZISF model. Here we have p̂ = 0.58, so a substantial

fraction of the observations (farm - time period combinations) are characterized by full efficiency. The

technology (effect of inputs on output) is not changed much from the basic SF model, but the intercept is

lower and the level of technical efficiency is higher (between 85% and 90%). Based on our simulations, this

is a predictable consequence of finding that a substantial number of observations are fully efficient.

The next block of columns of results is for the heteroskedasticity model in which all farms are inefficient

but the level of inefficiency depends on farm characteristics. A number of farm characteristics (age of the

farmer, education of the farmer and percentage of bantog fields) have significant effects on the level of

inefficiency. In this parameterization, a positive coefficient indicates that an increase in the corresponding

variable makes a farm more inefficient. The model implies that farms where the farmer is older and more

educated, and where the percentage of bantog fields is lower, tend to be more inefficient (less efficient). Or,

saying the same thing the other way around, farms are more efficient on average if the farmer is younger

and less educated and the percentage of bantog fields is higher. The effect of education is perhaps surpris-

ing. Because this model does not allow any farms to be fully efficient, we once again have a low level of

average technical efficiency, about 72%, which is similar to that for the basic SF model.

Next we consider the logit model in which the distribution of inefficiency is the same for all firms that

are not fully efficient, but the probability of being fully efficient depends on farm characteristics according
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to a logit model. Now age of the farmer and percentage of bantog fields have significant effects on the

probability of full efficiency, and the coefficient of household size is almost significant at the 5% level (t

statistic=-1.93). The results indicate that farms with younger farmers, smaller household size, and a larger

proportion of bantog fields are more likely to be fully efficient. The results for age of the farmer and

percentage of bantog fields are similar in nature to those for the heteroskedasticity model. The average

level of inefficiency is once again higher, about 86%, which is very similar to the result for the ZISF model

with constant p.

Finally, the last set of results are for the logit+heteroskedasticity model in which farm characteristics

influence both the probability of being fully efficient and the distribution of inefficiency for those farms

that are not fully efficient. Now none of the farm characteristics considered have significant effects on the

distribution of inefficiency for the inefficient farms, but three of them (age of the farmer, household size

and proportion of bantog fields) do have significant effects on the probability of being fully efficient. The

coefficients for these three variables have the same signs as in the logit model without heteroskedasticity.

It is interesting that we can estimate a model this complicated and still get significant results. Also, we

note that, because this model allows the probability of full efficiency, we are back to a high average level of

technical inefficiency, between 85% and 90%.

5.3 Model Comparison and Selection

We will now test the restrictions that distinguish the various models we have estimated. Based on the

results of our simulations, we will use the likelihood ratio (LR) test. We immediately encounter some

difficulties because, to use the LR test (or the other tests we considered in Section 3.4), the hypotheses

should be nested, whereas not all of our models are nested. There are two possible nested hierarchies of

models: (a) basic SF⊂ ZISF⊂logit⊂logit-heteroskedasticity, and (b) basic SF⊂heteroskedasticity.

We begin with hierarchy (a). When we test the hypothesis that p = 0 in the ZISF model, we obtain

LR= 5.07, which exceeds the 5% critical value of 2.71 for the distribution (1/2χ2
0 + 1/2χ2

1). So we reject the

basic SF model in favor of the ZISF model. Next we test the ZISF model against the logit model. This is

a standard test of the hypothesis that δ1 = δ2 = δ3 = δ4 = δ5 = 0 in the logit model. The LR statistic of

23.96 exceeds the 5% critical value for the χ2
5 distribution (11.07), so we reject the ZISF model in favor of the

logit model. Finally, we test the logit model against the logit-heteroskedasticity model. This is a standard

test of the hypothesis that γ1 = γ2 = γ3 = γ4 = γ5 = 0 in the logit-heteroskedasticity model. The LR

test statistic of 11.12 very marginally exceeds the 5% critical value, so we reject the logit model in favor
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of the logit-heteroskedasticity model, but not overwhelmingly. Note that the logit model is rejected even

though, in the logit-heteroskedasticity model, none of the individual γj in the heteroskedasticity portion of

the model is individually significant.

Now consider hierarchy (b). We test the basic SF model against the heteroskedasticity model. This is

a standard test of the hypothesis that γ1 = γ2 = γ3 = γ4 = γ5 = 0 in the heteroskedasticity model.

The LR statistic of 17.04 exceeds the 5% critical value, so we reject the basic SF model in favor of the

heteroskedasticity model.

We cannot test the heteroskedasticity model against the logit-heteroskedasticity model, at least not by

standard methods, since the restriction that would convert the logit-heteroskedasticity model into the het-

eroskedasticity model is δ0 = −∞ and under this null the other δj are unidentified. Still, the difference in

log-likelihoods, which is 11.56, would appear to argue in favor of the logit-heteroskedasticity model.

In order to compare the models in a slightly different way, and to amplify on the comment at the end

of the preceding paragraph, we will also consider some standard model selection criteria. We consider

AIC= −2LF + 2d (Akaike (1974)), BIC= −2LF + d ln n (Schwarz (1978)) and HQIC= −2LF + 2d ln (ln n)

(Hannan & Quinn (1979)), where d is the number of estimated parameters, n is the number of observations,

and LF is the log-likelihood value. Smaller values of these criteria indicate a “better” model. We note that

all three criteria favor the logit model over the heteroskedasticity model, two of the three favor the logit-

heteroskedasticity model over the heteroskedasticity model, and two of the three favor the logit model

over the logit-heteroskedasticity model.

Based on the results of our hypothesis tests and the comparison of the model selection procedures, we

conclude that a case could be made for either the logit model or the logit-heteroskedasticity model as the

preferred model. As we saw above, the substantive conclusions from these two models were basically the

same.

6 CONCLUDING REMARKS

In this paper we considered a generalization of the usual stochastic frontier model. In this new ”ZISF”

model, there is a probability p that a firm is fully efficient. This model was proposed by Kumbhakar,

Parmeter & Tsionas (2012), who showed how to estimate the model by MLE, how to update the probability

of a firm being fully efficient on the basis of the data, and how to estimate the inefficiency level of a specific

firm.
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We extend their analysis in a number of ways. We show that a result similar to that of Waldman (1982)

holds in the ZISF model, namely, that there is always a stationary point of the likelihood at parameter val-

ues that indicate no inefficiency, and that this point is a local maximum if the OLS residuals are positively

skewed. We propose a model in which the probability of a firm being fully efficient is not constant, but

rather is determined by a logit or probit model based on observable characteristics. We show how to test

the hypothesis that p = 0. We also provide a more comprehensive set of simulations than Kumbhakar et al.

(2012) did, and we include an empirical example.

Let λ = σu/σv, a standard measure in the stochastic frontier literature of the relative size of technical

inefficiency and statistical noise. The main practical implication of our simulations is that the ZISF model

works well when neither λ nor p is small. However, we have trouble estimating p reliably, or testing

whether it equals zero, when λ is small. And if the true p equals zero, we have trouble estimating it reliably

unless λ is larger than is empirically plausible (e.g., λ = 5). Larger sample size obviously helps, but the

above conclusions do not depend strongly on sample size in our simulations. Situations where the ZISF

model may be useful therefore have the characteristics that (i) it is reasonable to suppose that some firms

are fully efficient, and (ii) the inefficiency levels of the inefficient firms are not small relative to statistical

noise. Such situations do not seem implausible, and it is an empirical question as to how common they are.
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Table 2: Basic SF Model vs. ZISF Model, all replications : n = 200

Basic SF Model ZISF Model Basic SF Model ZISF Model Basic SF Model ZISF Model

λ = 1 (σu = 1, σv = 1) , p = 0 λ = 2 (σu = 1, σv = 0.5) , p = 0 λ = 5 (σu = 1, σv = 0.2) , p = 0

mean bias mse mean bias mse mean bias mse mean bias mse mean bias mse mean bias mse
β0 0.87 −0.13 0.20 0.60 −0.40 0.29 0.98 −0.02 0.02 0.71 −0.29 0.14 1.00 0.00 0.00 0.85 −0.15 0.04
σu 0.84 −0.16 0.30 0.91 −0.09 0.40 0.98 −0.02 0.03 0.97 −0.03 0.05 1.00 0.00 0.01 0.97 −0.03 0.01
σv 0.99 −0.01 0.02 1.02 0.02 0.02 0.50 0.00 0.01 0.54 0.04 0.01 0.19 −0.01 0.00 0.23 0.03 0.00
p – 0.53 0.53 0.43 – 0.33 0.33 0.19 – 0.16 0.16 0.05
λ 0.93 −0.07 0.44 0.95 −0.05 0.45 2.08 0.08 0.48 1.89 −0.11 0.41 5.61 0.61 7.04 4.79 −0.21 6.21
σ 1.39 −0.02 0.04 1.47 0.06 0.12 1.11 −0.01 0.01 1.12 0.00 0.03 1.02 0.00 0.00 1.00 −0.02 0.01
log L −313.00 −312.85 −229.93 −229.65 −176.43 −176.06

Ê [ui|ε̂i] 0.67 −0.13 0.50 0.40 −0.40 0.60 0.78 −0.02 0.17 0.51 −0.29 0.30 0.80 0.00 0.04 0.65 −0.15 0.08
p̂ (zi = 1|ε̂i) 0.53 0.33 0.16

λ = 1 (σu = 1, σv = 1) , p = 0.25 λ = 2 (σu = 1, σv = 0.5) , p = 0.25 λ = 5 (σu = 1, σv = 0.2) , p = 0.25

mean bias mse mean bias mse mean bias mse mean bias mse mean bias mse mean bias mse
β0 1.16 0.16 0.19 0.85 −0.15 0.15 1.26 0.26 0.08 0.98 −0.02 0.05 1.23 0.23 0.05 1.03 0.03 0.01
σu 0.95 −0.05 0.26 1.00 0.00 0.33 1.08 0.08 0.03 1.04 0.04 0.03 1.05 0.05 0.01 1.02 0.02 0.00
σv 0.97 −0.03 0.02 1.01 0.01 0.02 0.45 −0.05 0.01 0.50 0.00 0.01 0.14 −0.06 0.01 0.19 −0.01 0.00
p – 0.49 0.24 0.19 – 0.30 0.05 0.06 – 0.23 −0.02 0.02
λ 1.07 0.07 0.45 1.06 0.06 0.43 2.53 0.53 0.88 2.21 0.21 0.55 8.32 3.32 21.81 6.06 1.06 10.77
σ 1.44 0.03 0.04 1.51 0.09 0.11 1.18 0.06 0.01 1.16 0.05 0.02 1.05 0.03 0.01 1.04 0.02 0.00
log L −314.71 −314.55 −232.55 −232.22 −174.14 −172.76

Ê [ui|ε̂i] 0.76 0.16 0.51 0.45 −0.15 0.47 0.86 0.26 0.23 0.58 −0.02 0.20 0.82 0.23 0.09 0.63 0.03 0.04
p̂ (zi = 1|ε̂i) 0.49 0.30 0.23

λ = 1 (σu = 1, σv = 1) , p = 0.5 λ = 2 (σu = 1, σv = 0.5) , p = 0.5 λ = 5 (σu = 1, σv = 0.2) , p = 0.5

mean bias mse mean bias mse mean bias mse mean bias mse mean bias mse mean bias mse
β0 1.40 0.40 0.30 1.04 0.04 0.12 1.45 0.45 0.21 1.07 0.07 0.05 1.30 0.30 0.09 1.00 0.00 0.00
σu 1.00 0.00 0.22 1.07 0.07 0.31 1.07 0.07 0.02 1.06 0.06 0.02 0.93 −0.07 0.01 1.01 0.01 0.01
σv 0.93 −0.07 0.02 0.98 −0.02 0.02 0.39 −0.11 0.02 0.47 −0.03 0.01 0.11 −0.09 0.01 0.20 0.00 0.00
p – 0.51 0.01 0.12 – 0.44 −0.06 0.06 – 0.50 0.00 0.01
λ 1.16 0.16 0.45 1.15 0.15 0.43 2.83 0.83 1.29 2.34 0.34 0.57 8.96 3.96 36.70 5.17 0.17 0.61
σ 1.44 0.03 0.04 1.52 0.11 0.12 1.15 0.03 0.01 1.16 0.04 0.02 0.94 −0.08 0.01 1.03 0.01 0.01
log L −311.00 −310.77 −221.64 −220.71 −148.06 −138.15

Ê [ui|ε̂i] 0.80 0.40 0.59 0.44 0.05 0.40 0.85 0.45 0.35 0.47 0.08 0.18 0.70 0.30 0.13 0.40 0.00 0.03
p̂ (zi = 1|ε̂i) 0.51 0.44 0.50

λ = 1 (σu = 1, σv = 1) , p = 0.75 λ = 2 (σu = 1, σv = 0.5) , p = 0.75 λ = 5 (σu = 1, σv = 0.2) , p = 0.75

mean bias mse mean bias mse mean bias mse mean bias mse mean bias mse mean bias mse
β0 1.51 0.51 0.40 1.16 0.16 0.13 1.52 0.52 0.28 1.05 0.05 0.03 1.32 0.32 0.10 1.00 0.00 0.00
σu 0.89 −0.11 0.23 1.01 0.01 0.34 0.91 −0.09 0.02 1.03 0.03 0.04 0.71 −0.29 0.09 1.00 0.00 0.02
σv 0.90 −0.10 0.03 0.95 −0.05 0.02 0.37 −0.13 0.02 0.48 −0.02 0.00 0.11 −0.09 0.01 0.20 0.00 0.00
p – 0.57 −0.18 0.16 – 0.67 −0.08 0.05 – 0.75 0.00 0.00
λ 1.08 0.08 0.43 1.12 0.12 0.44 2.54 0.54 0.72 2.18 0.18 0.28 6.96 1.96 19.52 5.05 0.06 0.43
σ 1.35 −0.07 0.04 1.47 0.06 0.13 0.99 −0.13 0.03 1.14 0.02 0.03 0.72 −0.30 0.09 1.02 0.00 0.02
log L −300.69 −300.40 −196.18 −193.77 −99.12 −74.13

Ê [ui|ε̂i] 0.71 0.51 0.62 0.36 0.16 0.33 0.72 0.52 0.39 0.25 0.05 0.11 0.52 0.32 0.13 0.20 0.00 0.02
p̂ (zi = 1|ε̂i) 0.57 0.67 0.75
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Table 3: Basic SF Model vs. ZISF Model, correct skew replications : n = 200

Basic SF Model ZISF Model Basic SF Model ZISF Model Basic SF Model ZISF Model

λ = 1 (σu = 1, σv = 1) , p = 0 λ = 2 (σu = 1, σv = 0.5) , p = 0 λ = 5 (σu = 1, σv = 0.2) , p = 0

mean bias mse mean bias mse mean bias mse mean bias mse mean bias mse mean bias mse
β0 1.06 0.06 0.07 0.71 −0.29 0.20 0.99 −0.01 0.02 0.72 −0.28 0.14 1.00 0.00 0.00 0.85 −0.15 0.04
σu 1.08 0.08 0.10 1.17 0.17 0.22 0.98 −0.02 0.03 0.97 −0.03 0.04 1.00 0.00 0.01 0.97 −0.03 0.01
σv 0.94 −0.06 0.02 0.98 −0.02 0.02 0.49 −0.01 0.01 0.54 0.04 0.01 0.19 −0.01 0.00 0.23 0.03 0.00
p – 0.40 0.40 0.26 – 0.32 0.32 0.18 – 0.16 0.16 0.05
λ 1.20 0.20 0.28 1.23 0.23 0.30 2.10 0.10 0.46 1.90 −0.10 0.39 5.61 0.61 7.04 4.79 −0.21 6.21
σ 1.46 0.05 0.03 1.56 0.15 0.13 1.11 −0.01 0.01 1.12 0.00 0.03 1.02 0.00 0.00 1.00 −0.02 0.01
log L −313.16 −312.97 −229.94 −229.66 −176.43 −176.06

Ê [ui|ε̂i] 0.86 0.06 0.36 0.51 −0.29 0.49 0.78 −0.01 0.16 0.52 −0.28 0.29 0.80 0.00 0.04 0.65 −0.15 0.08
p̂ (zi = 1|ε̂i) 0.40 0.32 0.16

λ = 1 (σu = 1, σv = 1) , p = 0.25 λ = 2 (σu = 1, σv = 0.5) , p = 0.25 λ = 5 (σu = 1, σv = 0.2) , p = 0.25

mean bias mse mean bias mse mean bias mse mean bias mse mean bias mse mean bias mse
β0 1.29 0.29 0.16 0.93 −0.07 0.12 1.26 0.26 0.08 0.98 −0.02 0.05 1.23 0.23 0.05 1.03 0.03 0.01
σu 1.13 0.13 0.12 1.19 0.19 0.20 1.08 0.08 0.03 1.04 0.04 0.03 1.04 0.04 0.01 1.02 0.02 0.00
σv 0.94 −0.06 0.02 0.98 −0.02 0.02 0.45 −0.05 0.01 0.50 0.00 0.01 0.14 −0.06 0.01 0.19 −0.01 0.00
p – 0.39 0.14 0.12 – 0.30 0.05 0.06 – 0.23 −0.02 0.02
λ 1.27 0.27 0.35 1.26 0.26 0.32 2.53 0.53 0.88 2.21 0.21 0.55 8.32 3.32 21.81 6.06 1.06 10.77
σ 1.50 0.08 0.03 1.57 0.16 0.11 1.18 0.06 0.01 1.16 0.05 0.02 1.05 0.03 0.01 1.04 0.02 0.00
log L −315.09 −314.90 −232.57 −232.24 −174.14 −172.76

Ê [ui|ε̂i] 0.90 0.30 0.47 0.54 −0.06 0.43 0.86 0.26 0.23 0.58 −0.02 0.20 0.82 0.23 0.09 0.63 0.03 0.04
p̂ (zi = 1|ε̂i) 0.39 0.30 0.23

λ = 1 (σu = 1, σv = 1) , p = 0.5 λ = 2 (σu = 1, σv = 0.5) , p = 0.5 λ = 5 (σu = 1, σv = 0.2) , p = 0.5

mean bias mse mean bias mse mean bias mse mean bias mse mean bias mse mean bias mse
β0 1.51 0.51 0.32 1.10 0.10 0.12 1.45 0.45 0.21 1.07 0.07 0.05 1.30 0.30 0.09 1.00 0.00 0.00
σu 1.14 0.14 0.11 1.22 0.22 0.21 1.07 0.07 0.02 1.06 0.06 0.02 0.93 −0.07 0.01 1.01 0.01 0.01
σv 0.91 −0.09 0.02 0.96 −0.04 0.02 0.39 −0.11 0.02 0.47 −0.03 0.01 0.11 −0.09 0.01 0.20 0.00 0.00
p – 0.44 −0.06 0.11 – 0.44 −0.06 0.06 – 0.50 0.00 0.01
λ 1.33 0.33 0.38 1.31 0.31 0.35 2.83 0.83 1.29 2.34 0.34 0.57 8.96 3.96 36.70 5.17 0.17 0.61
σ 1.48 0.07 0.03 1.58 0.16 0.12 1.15 0.03 0.01 1.16 0.04 0.02 0.94 −0.08 0.01 1.03 0.01 0.01
log L −311.17 −310.91 −221.64 −220.71 −148.06 −138.15

Ê [ui|ε̂i] 0.91 0.51 0.61 0.51 0.11 0.40 0.85 0.45 0.35 0.47 0.08 0.18 0.70 0.30 0.13 0.40 0.00 0.03
p̂ (zi = 1|ε̂i) 0.44 0.44 0.50

λ = 1 (σu = 1, σv = 1) , p = 0.75 λ = 2 (σu = 1, σv = 0.5) , p = 0.75 λ = 5 (σu = 1, σv = 0.2) , p = 0.75

mean bias mse mean bias mse mean bias mse mean bias mse mean bias mse mean bias mse
β0 1.64 0.64 0.46 1.22 0.22 0.15 1.52 0.52 0.28 1.05 0.05 0.03 1.32 0.32 0.10 1.00 0.00 0.00
σu 1.05 0.05 0.09 1.19 0.19 0.23 0.91 −0.09 0.02 1.03 0.03 0.04 0.71 −0.29 0.09 1.00 0.00 0.02
σv 0.87 −0.13 0.03 0.93 −0.07 0.02 0.37 −0.13 0.02 0.48 −0.02 0.00 0.11 −0.09 0.01 0.20 0.00 0.00
p – 0.49 −0.26 0.18 – 0.67 −0.08 0.05 – 0.75 0.00 0.00
λ 1.27 0.27 0.33 1.31 0.31 0.35 2.54 0.54 0.72 2.19 0.19 0.28 6.96 1.96 19.52 5.05 0.06 0.43
σ 1.40 −0.02 0.03 1.54 0.13 0.13 0.99 −0.13 0.03 1.14 0.02 0.03 0.72 −0.30 0.09 1.02 0.00 0.02
log L −301.06 −300.72 −196.20 −193.79 −99.12 −74.13

Ê [ui|ε̂i] 0.84 0.64 0.69 0.42 0.22 0.34 0.72 0.52 0.39 0.25 0.05 0.11 0.52 0.32 0.13 0.20 0.00 0.02
p̂ (zi = 1|ε̂i) 0.49 0.67 0.75
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Table 4: Basic SF Model vs. ZISF Model, all replications : n = 500

Basic SF Model ZISF Model Basic SF Model ZISF Model Basic SF Model ZISF Model

λ = 1 (σu = 1, σv = 1) , p = 0 λ = 2 (σu = 1, σv = 0.5) , p = 0 λ = 5 (σu = 1, σv = 0.2) , p = 0

mean bias mse mean bias mse mean bias mse mean bias mse mean bias mse mean bias mse
β0 0.90 −0.10 0.11 0.59 −0.41 0.26 0.99 −0.01 0.01 0.74 −0.26 0.11 1.00 0.00 0.00 0.88 −0.12 0.03
σu 0.88 −0.12 0.17 0.94 −0.06 0.24 0.99 −0.01 0.01 0.95 −0.05 0.01 1.00 0.00 0.00 0.97 −0.03 0.00
σv 1.01 0.01 0.01 1.04 0.04 0.01 0.50 0.00 0.00 0.54 0.04 0.01 0.20 0.00 0.00 0.22 0.02 0.00
p – 0.50 0.50 0.38 – 0.30 0.30 0.15 – 0.12 0.12 0.03
λ 0.91 −0.09 0.21 0.93 −0.07 0.23 2.02 0.02 0.15 1.79 −0.21 0.19 5.18 0.18 0.99 4.55 −0.45 1.35
σ 1.39 −0.02 0.02 1.46 0.05 0.08 1.11 0.00 0.00 1.10 −0.02 0.01 1.02 0.00 0.00 0.99 −0.03 0.00
log L −785.23 −785.03 −577.71 −577.38 −442.32 −441.94

Ê [ui|ε̂i] 0.70 −0.10 0.40 0.39 −0.41 0.55 0.79 −0.01 0.15 0.54 −0.26 0.26 0.80 0.00 0.03 0.68 −0.12 0.06
p̂ (zi = 1|ε̂i) 0.50 0.30 0.12

λ = 1 (σu = 1, σv = 1) , p = 0.25 λ = 2 (σu = 1, σv = 0.5) , p = 0.25 λ = 5 (σu = 1, σv = 0.2) , p = 0.25

mean bias mse mean bias mse mean bias mse mean bias mse mean bias mse mean bias mse
β0 1.19 0.19 0.13 0.85 −0.15 0.12 1.26 0.26 0.07 1.00 0.00 0.04 1.22 0.22 0.05 1.01 0.01 0.01
σu 0.99 −0.01 0.13 1.03 0.03 0.19 1.08 0.08 0.01 1.02 0.02 0.01 1.04 0.04 0.00 1.01 0.01 0.00
σv 0.99 −0.01 0.01 1.03 0.03 0.01 0.46 −0.04 0.00 0.50 0.00 0.00 0.14 −0.06 0.00 0.19 −0.01 0.00
p – 0.46 0.21 0.16 – 0.27 0.02 0.04 – 0.24 −0.01 0.01
λ 1.04 0.04 0.19 1.03 0.03 0.19 2.39 0.39 0.32 2.08 0.08 0.18 7.55 2.55 8.46 5.36 0.36 1.87
σ 1.44 0.03 0.02 1.50 0.09 0.07 1.18 0.06 0.01 1.15 0.03 0.00 1.05 0.03 0.00 1.03 0.01 0.00
log L −790.14 −789.94 −584.97 −584.58 −436.65 −433.87

Ê [ui|ε̂i] 0.79 0.19 0.42 0.45 −0.15 0.42 0.86 0.26 0.22 0.60 0.00 0.18 0.82 0.22 0.08 0.61 0.01 0.04
p̂ (zi = 1|ε̂i) 0.46 0.27 0.24

λ = 1 (σu = 1, σv = 1) , p = 0.5 λ = 2 (σu = 1, σv = 0.5) , p = 0.5 λ = 5 (σu = 1, σv = 0.2) , p = 0.5

mean bias mse mean bias mse mean bias mse mean bias mse mean bias mse mean bias mse
β0 1.45 0.45 0.26 1.05 0.05 0.09 1.45 0.45 0.21 1.05 0.05 0.03 1.30 0.30 0.09 1.00 0.00 0.00
σu 1.06 0.06 0.10 1.10 0.10 0.14 1.07 0.07 0.01 1.02 0.02 0.01 0.93 −0.07 0.01 1.00 0.00 0.00
σv 0.94 −0.06 0.01 0.99 −0.01 0.01 0.40 −0.10 0.01 0.49 −0.01 0.00 0.12 −0.08 0.01 0.20 0.00 0.00
p – 0.48 −0.02 0.10 – 0.46 −0.04 0.04 – 0.50 0.00 0.00
λ 1.17 0.17 0.19 1.13 0.13 0.16 2.72 0.72 0.68 2.14 0.14 0.15 8.01 3.01 10.75 5.03 0.03 0.17
σ 1.45 0.04 0.02 1.51 0.10 0.06 1.15 0.03 0.00 1.14 0.02 0.01 0.93 −0.09 0.01 1.02 0.00 0.00
log L −779.58 −779.28 −556.16 −554.57 −371.51 −347.55

Ê [ui|ε̂i] 0.85 0.45 0.53 0.45 0.05 0.36 0.85 0.45 0.34 0.45 0.05 0.15 0.70 0.30 0.12 0.40 0.00 0.02
p̂ (zi = 1|ε̂i) 0.48 0.46 0.50

λ = 1 (σu = 1, σv = 1) , p = 0.75 λ = 2 (σu = 1, σv = 0.5) , p = 0.75 λ = 5 (σu = 1, σv = 0.2) , p = 0.75

mean bias mse mean bias mse mean bias mse mean bias mse mean bias mse mean bias mse
β0 1.56 0.56 0.38 1.14 0.14 0.09 1.52 0.52 0.27 1.02 0.02 0.01 1.32 0.32 0.10 1.00 0.00 0.00
σu 0.95 −0.05 0.11 1.05 0.05 0.19 0.91 −0.09 0.01 1.00 0.00 0.02 0.71 −0.29 0.09 1.00 0.00 0.01
σv 0.91 −0.09 0.02 0.97 −0.03 0.01 0.38 −0.12 0.02 0.49 −0.01 0.00 0.11 −0.09 0.01 0.20 0.00 0.00
p – 0.58 −0.17 0.14 – 0.72 −0.03 0.02 – 0.75 0.00 0.00
λ 1.08 0.08 0.19 1.10 0.10 0.21 2.43 0.43 0.32 2.04 0.04 0.07 6.36 1.36 2.77 5.00 0.00 0.16
σ 1.35 −0.06 0.02 1.47 0.06 0.08 0.99 −0.13 0.02 1.12 0.00 0.01 0.72 −0.30 0.09 1.02 0.00 0.01
log L −754.00 −753.53 −492.83 −487.45 −250.31 −188.10

Ê [ui|ε̂i] 0.76 0.56 0.58 0.34 0.14 0.27 0.72 0.52 0.39 0.21 0.02 0.09 0.52 0.32 0.13 0.20 0.00 0.01
p̂ (zi = 1|ε̂i) 0.58 0.72 0.75
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Table 5: Likelihood Ratio Test, n = 200

All Correct Skew Incorrect Skew
Mean Rejection Total Mean Rejection Total Mean Rejection Total

λ = 1 p = 0 0.29 21 (0.02) 1000 0.38 21 (0.03) 776 0.00 0 (0.00) 224
p = 0.25 0.32 20 (0.02) 1000 0.37 20 (0.02) 842 0.00 0 (0.00) 158
p = 0.5 0.46 40 (0.04) 1000 0.53 40 (0.05) 878 0.00 0 (0.00) 122
p = 0.75 0.57 53 (0.05) 1000 0.67 53 (0.06) 850 0.00 0 (0.00) 150

λ = 2 p = 0 0.56 42 (0.04) 1000 0.56 42 (0.04) 994 0.00 0 (0.00) 6
p = 0.25 0.66 63 (0.06) 1000 0.66 63 (0.06) 999 0.00 0 (0.00) 1
p = 0.5 1.87 244 (0.24) 1000 1.87 244 (0.24) 1000 – 0
p = 0.75 4.81 596 (0.60) 1000 4.81 596 (0.60) 999 0.00 0 (0.00) 1

λ = 5 p = 0 0.73 60 (0.06) 999+ 0.73 61 (0.06) 999+ 0.00 0 0 0
p = 0.25 2.76 393 (0.39) 996+ 2.76 395 (0.40) 996+ – 0
p = 0.5 19.82 988 (0.99) 997+ 19.82 988 (0.99) 997+ – 0
p = 0.75 49.98 997 (1.00) 997+ 49.98 997 (1.00) 997+ – 0

Table 6: Likelihood Ratio Test, n = 500

All Correct Skew Incorrect Skew
Mean Rejection Total Mean Rejection Total Mean Rejection Total

λ = 1 p = 0 0.39 30 (0.03) 1000 0.45 30 (0.03) 879 0.00 0 (0.00) 121
p = 0.25 0.41 28 (0.03) 1000 0.45 28 (0.03) 921 0.00 0 (0.00) 79
p = 0.5 0.60 48 (0.05) 1000 0.62 48 (0.05) 964 0.00 0 (0.00) 36
p = 0.75 0.95 102 (0.10) 1000 1.01 102 (0.11) 939 0.00 0 (0.00) 61

λ = 2 p = 0 0.66 56 (0.06) 1000 0.66 56 (0.06) 1000 – 0
p = 0.25 0.77 63 (0.06) 1000 0.77 63 (0.06) 1000 – 0
p = 0.5 3.19 461 (0.46) 1000 3.19 461 (0.46) 1000 – 0
p = 0.75 10.76 911 (0.91) 1000 10.76 911 (0.91) 1000 – 0

λ = 5 p = 0 0.75 70 (0.07) 1000 0.75 70 (0.07) 1000 – 0
p = 0.25 5.55 689 (0.69) 1000 5.55 689 (0.69) 1000 – 0
p = 0.5 47.94 1000 (1.00) 1000 47.94 1000 (1.00) 1000 – 0
p = 0.75 124.42 1000 (1.00) 1000 124.42 1000 (1.00) 1000 – 0

Table 7: Wald Test, n = 200

OPG Hessian Robust
Mean Rejection Total Mean Rejection Total Mean Rejection Total

λ = 1 p = 0 5.92 128 (0.17) 773∗ 57.97 189 (0.24) 776 143.75 546 (0.70) 776
p = 0.25 4.42 147 (0.18) 838∗ 36.90 215 (0.26) 842 104.61 592 (0.70) 842
p = 0.5 6.98 179 (0.21) 873∗ 40.61 270 (0.31) 878 135.57 629 (0.72) 878
p = 0.75 9.74 247 (0.29) 849∗ 63.53 334 (0.39) 850 146.11 607 (0.71) 850

λ = 2 p = 0 6.18 215 (0.22) 994 21.23 290 (0.29) 994 45.46 620 (0.62) 994
p = 0.25 4.26 264 (0.26) 999 10.21 320 (0.32) 997� 19.28 618 (0.62) 999
p = 0.5 10.91 580 (0.58) 1000 14.37 639 (0.64) 1000 19.46 735 (0.73) 1000
p = 0.75 45.72 856 (0.86) 999 61.79 883 (0.88) 998� 80.71 906 (0.91) 999

λ = 5 p = 0 3.25 266 (0.27) 999+ 3.58 315 (0.32) 996�+ 5.03 490 (0.49) 999+

p = 0.25 8.63 696 (0.70) 998+ 9.16 725 (0.73) 997�+ 9.90 727 (0.73) 998+

p = 0.5 59.73 997 (1.00) 998+ 60.75 997 (1.00) 998+ 61.12 996 (1.00) 998+

p = 0.75 247.62 1000 (1.00) 1000 254.99 1000 (1.00) 1000 257.77 1000 (1.00) 1000

1. ∗ Some iterations are dropped due to a singular OPG variance matrix.
2. �Some of the iterations where MLE is at the boundary (p̂ = 0) are dropped due to not negative definite Hessian.
3. + Some iterations dropped due to σ̂v being too small such that λ̂ is not well defined.
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Table 8: Wald Test, n = 500

OPG Hessian Robust
Mean Rejection Total Mean Rejection Total Mean Rejection Total

λ = 1 p = 0 12.05 201 (0.23) 878∗ 112.28 250 (0.29) 877� 286.90 620 (0.71) 878◦

p = 0.25 10.34 203 (0.22) 921 94.59 264 (0.29) 921 215.21 639 (0.69) 921
p = 0.5 12.69 275 (0.29) 963∗ 47.99 347 (0.36) 964 121.96 661 (0.69) 964
p = 0.75 24.74 368 (0.39) 938∗ 120.86 447 (0.48) 937� 258.85 678 (0.72) 939

λ = 2 p = 0 5.32 262 (0.26) 1000 26.94 310 (0.31) 1000 47.13 618 (0.62) 1000
p = 0.25 3.94 306 (0.31) 1000 0.47 373 (0.37) 999� 8.46 642 (0.64) 1000
p = 0.5 17.10 800 (0.80) 1000 19.10 831 (0.83) 1000 22.49 837 (0.84) 1000
p = 0.75 93.38 988 (0.99) 1000 105.45 987 (0.99) 1000 121.46 983 (0.98) 1000

λ = 5 p = 0 3.02 282 (0.28) 1000 3.24 311 (0.31) 1000 4.79 496 (0.50) 1000
p = 0.25 17.87 890 (0.89) 1000 18.79 894 (0.89) 1000 20.02 893 (0.89) 1000
p = 0.5 142.55 1000 (1.00) 1000 143.99 1000 (1.00) 1000 144.73 1000 (1.00) 1000
p = 0.75 609.81 1000 (1.00) 1000 618.15 1000 (1.00) 1000 621.49 1000 (1.00) 1000

Table 9: Score-Based Tests, n = 200

LM Modified LM KT
Mean Rejection Total Mean Rejection Total Mean Rejection Total

λ = 1 p = 0 1.83 99 (0.13) 776 1.47 122 (0.16) 776 1.82 146 (0.19) 776
p = 0.25 1.83 101 (0.12) 840∗ 1.48 135 (0.16) 840∗ 1.83 160 (0.19) 840∗

p = 0.5 1.74 112 (0.13) 878 1.24 116 (0.13) 878 1.74 161 (0.18) 878
p = 0.75 1.74 100 (0.12) 849∗ 1.07 88 (0.10) 849∗ 1.74 152 (0.18) 849∗

λ = 2 p = 0 1.30 73 (0.07) 994 0.94 105 (0.11) 994 1.29 135 (0.14) 994
p = 0.25 1.20 75 (0.08) 999 0.77 96 (0.10) 999 1.19 130 (0.13) 999
p = 0.5 1.69 140 (0.14) 1000 0.18 16 (0.02) 1000 1.68 222 (0.22) 1000
p = 0.75 3.82 422 (0.42) 999 0.04 3 (0.00) 999 3.82 531 (0.53) 999

λ = 5 p = 0 1.16 58 (0.06) 999+ 0.71 79 (0.08) 999+ 1.11 113 (0.11) 999+

p = 0.25 1.78 139 (0.14) 996+ 0.12 7 (0.01) 996+ 1.73 216 (0.22) 996+

p = 0.5 13.10 961 (0.96) 997+ 0.00 0 (0.00) 997+ 13.10 978 (0.98) 997+

p = 0.75 29.46 996 (1.00) 997+ 0.00 0 (0.00) 997+ 29.46 996 (1.00) 997+

Table 10: Score-Based Tests, n = 500

LM Modified LM KT
Mean Rejection Total Mean Rejection Total Mean Rejection Total

λ = 1 p = 0 1.39 84 (0.10) 878∗ 0.99 104 (0.12) 878∗ 1.39 130 (0.15) 878∗

p = 0.25 1.36 81 (0.09) 921 0.98 100 (0.11) 921 1.36 127 (0.14) 921
p = 0.5 1.26 73 (0.08) 964 0.70 79 (0.08) 964 1.26 125 (0.13) 964
p = 0.75 1.37 86 (0.09) 939 0.45 50 (0.05) 939 1.37 151 (0.16) 939

λ = 2 p = 0 1.21 76 (0.08) 1000 0.79 89 (0.09) 1000 1.20 127 (0.13) 1000
p = 0.25 1.07 48 (0.05) 1000 0.62 68 (0.07) 1000 1.06 107 (0.11) 1000
p = 0.5 2.59 249 (0.25) 1000 0.03 2 (0.00) 1000 2.57 370 (0.37) 1000
p = 0.75 8.14 795 (0.80) 1000 0.00 0 (0.00) 1000 8.14 887 (0.89) 1000

λ = 5 p = 0 1.06 56 (0.06) 1000 0.62 69 (0.07) 1000 0.97 109 (0.11) 1000
p = 0.25 2.97 280 (0.28) 1000 0.03 1 (0.00) 1000 2.92 415 (0.41) 1000
p = 0.5 30.94 1000 (1.00) 1000 0.00 0 (0.00) 1000 30.94 1000 (1.00) 1000
p = 0.75 69.77 1000 (1.00) 1000 0.00 0 (0.00) 1000 69.77 1000 (1.00) 1000

1. ∗ Some iterations are dropped due to a singular OPG variance matrix.
2. �Some of the iterations where MLE is at the boundary (p̂ = 0 or p̂ = 1) are dropped due to not negative definite Hessian.
3. + Some iterations dropped due to σ̂v being too small such that λ̂ is not well defined.
4. ◦ One iteration dropped due to p̂ = 1
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Table 11: Model Comparison

Basic SF ZISF Heteroskedasticity Logit Logit+Heteroskedasticity

Variable Coef SE t-stat Coef SE t-stat Coef SE t-stat Coef SE t-stat Coef SE t-stat
cons (β0) 0.27 0.04 6.68 0.08 0.05 1.67 0.25 0.04 5.50 0.07 0.04 1.80 0.05 0.04 1.38
time period (θ) 0.02 0.01 2.27 0.01 0.01 2.19 0.02 0.01 2.60 0.02 0.01 2.57 0.02 0.01 2.60
area (β1) 0.53 0.08 6.38 0.52 0.08 6.58 0.57 0.09 6.43 0.59 0.09 6.85 0.56 0.08 7.04
labor (β2) 0.23 0.09 2.71 0.25 0.08 3.07 0.21 0.09 2.46 0.22 0.08 2.65 0.24 0.08 3.07
fertilizer (β3) 0.20 0.05 3.95 0.21 0.05 4.54 0.19 0.05 3.83 0.18 0.05 3.82 0.18 0.04 3.96
β11 −0.48 0.21 −2.27 −0.45 0.20 −2.26 −0.35 0.25 −1.39 −0.29 0.25 −1.13 −0.31 0.26 −1.19
β12 0.61 0.17 3.60 0.55 0.17 3.21 0.58 0.20 2.87 0.53 0.21 2.60 0.50 0.21 2.35
β13 0.06 0.15 0.43 0.08 0.13 0.62 0.01 0.15 0.07 0.00 0.14 0.02 0.02 0.14 0.16
β22 −0.56 0.24 −2.33 −0.50 0.25 −2.04 −0.60 0.27 −2.21 −0.56 0.27 −2.08 −0.47 0.27 −1.73
β23 −0.14 0.13 −1.04 −0.12 0.12 −1.02 −0.11 0.15 −0.78 −0.11 0.13 −0.80 −0.12 0.13 −0.91
β33 −0.01 0.09 −0.08 −0.03 0.08 −0.45 0.01 0.09 0.15 0.00 0.09 −0.03 −0.01 0.09 −0.13

σu 0.44 0.03 13.86 0.44 0.04 10.87 0.42 0.04 10.43
σui 0.42 0.53
cons (γ0) −3.05 0.93 −3.27 2.61 3.11 0.84
age (γ1) 0.03 0.01 2.06 −0.07 0.04 −1.60
edyrs (γ2) 0.11 0.03 3.36 −0.03 0.12 −0.28
hhsize (γ3) 0.08 0.09 0.99 −0.28 0.22 −1.26
nadult (γ4) −0.10 0.11 −0.98 −0.02 0.23 −0.08
banrat (γ5) −1.30 0.43 −2.98 1.32 1.20 1.10
σv 0.16 0.02 8.23 0.20 0.02 12.22 0.17 0.02 8.34 0.20 0.01 14.15 0.21 0.01 15.84
λ 2.75 2.18 2.43 2.06 2.49

p 0.58 0.11 5.42
pi 0.55 0.57

p̂r [zi = 1|ε̂] 0.58 0.55 0.57
cons (δ0) 3.88 2.29 1.69 8.80 3.42 2.57
age (δ1) −0.10 0.03 −2.88 −0.16 0.05 −3.36
edyrs (δ2) −0.14 0.15 −0.93 −0.27 0.21 −1.30
hhsize (δ3) −0.44 0.23 −1.93 −0.81 0.32 −2.56
nadult (δ4) 0.35 0.27 1.30 0.44 0.35 1.25
banrat (δ5) 4.22 1.31 3.23 5.46 1.55 3.53

Ê [ui| ε̂ i] 0.35 0.15 0.33 0.15 0.14
exp

(
−Ê [ui| ε̂ i]

)
0.70 0.86 0.72 0.86 0.87

Ê [exp (−ui) |ε̂ i] 0.73 0.89 0.74 0.88 0.89

ln L −74.41 −71.88 −65.89 −59.90 −54.33
Num. of parameter 13 14 18 19 24
AIC 174.82 171.75 167.78 157.79 156.67
BIC 224.75 225.52 236.91 230.76 248.84
HQIC 194.70 193.17 195.31 186.86 193.38
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Appendix 1

We will use the following notation. Let fv (ε i) =
√

1+λ2

σ2 φ

(
ε i

√
1+λ2

σ2

)
, fε (ε i) = 2

σ φ
( εi

σ

) (
1−Φ

(
εiλ
σ

))
,

fp (ε i) = p fv (ε i) + (1− p) fε (ε i), ln L = ∑ ln fp (ε i), mi =
φ
(

εiλ
σ

)
1−Φ

(
εiλ
σ

) , θ =
(

β′, λ, σ2, p
)′, β = k × 1 vector,

θ∗∗ =
(

β̂′, λ̂, σ̂2, p̂
)′

, where β̂ =OLS, λ̂ = 0, σ̂2 = 1
n ∑ ε̂2

i , ε̂ i =yi − x′i β̂, p̂ ∈ [0, 1]. ∨ indicates maximum.

Result 1. θ∗∗ is a stationary point of the log likelihood function.

Proof. The first derivative of ln L is :

S (θ) =



∂ ln L
∂β

∂ ln L
∂λ

∂ ln L
∂σ2

∂ ln L
∂p



=



n
∑

i=1

p fv(εi)
(

1+λ2

σ2 εixi

)
+(1−p) fε(εi)

(
εixi
σ2 +

mixiλ
σ

)
fp(εi)

n
∑

i=1

p fv(εi)
(

λ
1+λ2−

λ
σ2 ε2

i

)
−(1−p) fε(εi)( 1

σ miεi)
fp(εi)

n
∑

i=1

p fv(εi)
(
− 1

2σ2 +
1+λ2

2σ4 ε2
i

)
+(1−p) fε(εi)

(
− 1

2σ2 +
1

2σ4 ε2
i +

λ
2σ3 miεi

)
fp(εi)

n
∑

i=1

fv(εi)− fε(εi)
fp(εi)


.

When λ = 0,

S (θ)|λ=0 =



1
σ2

n
∑

i=1
ε ixi

− (1− p)
√

2
π

1
σ

n
∑

i=1
ε i

− n
2σ2 +

1
2σ4

n
∑

i=1
ε2

i

0


.

It is straightforward that S (θ∗∗) = 0, since, with ε i = ε̂ i,
n
∑

i=1
ε̂ i = 0 and

n
∑

i=1
ε̂ ixi = 0. Therefore, θ∗∗ is a

stationary point.
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Result 2. Evaluated at the stationary point, θ∗∗, the Hessian of the log likelihood is negative semi-definite with two

zero eigenvalues.

Proof. The Hessian evaluated at the stationary point θ∗∗ is

H (θ∗∗) =



− 1
σ̂2

n
∑

i=1
xix′i (1− p̂)

√
2
π

1
σ̂

n
∑

i=1
xi 0 0

(1− p̂)
√

2
π

1
σ̂

n
∑

i=1
x′i − (1− p̂)2 2n

π 0 0

0 0 − n
2σ̂4 0

0 0 0 0


.

When p̂ = 1,

H (θ∗∗) =



− 1
σ̂2

n
∑

i=1
xix′i 0 0 0

0 0 0 0

0 0 − n
2σ̂4 0

0 0 0 0


.

Because− 1
σ̂2 ∑n

i=1 xix′i is a negative definite matrix, H (θ∗∗) is a negative semi-definite matrix with two zero

eigenvalues.

Now suppose that p̂ 6= 1. Note that the first row of H (θ∗∗),
(
− 1

σ̂2

n
∑

i=1
x′i, (1− p̂)

√
2
π

n
σ̂ , 0, 0

)
, is linearly

dependent with the (k + 1)th row of H (θ∗∗). Multiplying the first row by (1− p̂)
√

2
π σ̂ and adding to the

(k + 1)throw results in a row vector of zeros. Hence,

H (θ∗∗) ∼



− 1
σ̂2

n
∑

i=1
xix′i (1− p̂)

√
2
π

1
σ̂

n
∑

i=1
xi 0 0

0 0 0 0

0 0 − n
2σ̂4 0

0 0 0 0


,

where ∼ stands for an elementary row operation. Again, the first column and the (k + 1)th column of

the transferred matrix are linearly dependent. Similarly, multiplying the first column by (1− p̂)
√

2
π σ̂ and
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adding to the (k + 1)th column results in a column vector of zeros. In other words,

H (θ∗∗) ∼



− 1
σ̂2

n
∑

i=1
xix′i (1− p̂)

√
2
π

1
σ̂

n
∑

i=1
xi 0 0

0 0 0 0

0 0 − n
2σ̂4 0

0 0 0 0


∼



− 1
σ̂2

n
∑

i=1
xix′i 0 0 0

0 0 0 0

0 0 − n
2σ̂4 0

0 0 0 0


.

Elementary operations preserve the rank of a matrix. Hence, the rank of H (θ∗∗) is k + 1, i.e., H (θ∗∗) has

two zero eigenvalues.

Now we will show that H(θ∗∗) is negative semi-definite. Let α = (α′1, α2, α3, α4)
′ be an arbitrary non-zero

(k + 3)× 1 vector, where α1 is a k× 1 vector, and α2, α3, α4 are scalars. Then,

α′H (θ∗∗) α = −
(

1
σ̂

1√
n

α′1

n

∑
i=1

xi − α2 (1− p)

√
2
π

√
n

)2

− 1
σ̂2 α′1

(
n

∑
i=1

xix′i −
1
n

n

∑
i=1

xi

n

∑
i=1

x′i

)
α1 −

n
2σ̂4 α2

3

≤ 0,

because
n

∑
i=1

xix′i −
1
n

n

∑
i=1

xi

n

∑
i=1

x′i =
n

∑
i=1

(
xi −

1
n

n

∑
j=1

xj

)(
xi −

1
n

n

∑
j=1

xj

)′
is positive semi-definite.

Therefore H (θ∗∗) is negative semi-definite.

Result 3. θ∗∗ with p̂ ∈ [0, 1) is a local maximizer of the log likelihood function if and only if ∑n
i=1 ε̂3

i> 0.

Proof. From Result 2, we know that the Hessian evaluated at θ∗∗ is negative semi-definite. Therefore, if

the log likelihood decreases in the direction of the two eigenvectors associated with zero eigenvalues, θ∗∗

is a local maximizer of the log likelihood. The two eigenvectors that are associated with the two zero

eigenvalue are



(1− p̂)
√

2
π σ̂

0

1

0

0


and



0

0

0

0

1


.
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Let

∆θ = µ



(1− p̂)
√

2
π σ̂

0

1

0

0


+ φ



0

0

0

0

1


=



(1− p̂)
√

2
π σ̂µ

0

µ

0

φ


.

Because λ ≥ 0, µ > 0. ∆θ has only three non-zero arguments. Thus, relevant parameters would be β0, λ,

and p. By Taylor’s expansion,

L (θ∗ + ∆θ)− L (θ∗) =
1
6

Lβ0β0β0

(
(1− p̂)

√
2
π

σ̂µ

)3

+ 3Lβ0β0λ

(
(1− p̂)

√
2
π

σ̂µ

)2

µ + 3Lβ0λλ

(
(1− p̂)

√
2
π

σ̂µ

)
µ2

+ 3Lβ0β0 p

(
(1− p̂)

√
2
π

σ̂µ

)2

φ + 3Lβ0 pp

(
(1− p̂)

√
2
π

σ̂µ

)
φ2 + Lλλλ µ3

+ 3Lλλp µ2φ + 3Lλpp µφ2 + Lppp φ3 + 6Lβ0 pλ

(
(1− p̂)

√
2
π

σ̂µ

)
µφ

]
+ o

(
(µ ∨ φ)4

)
= (1− p̂)

1
6π

√
2
π

1
σ̂3

(
−4p̂2 + p̂(8− 3π) + π − 4

) n

∑
i=1

ε̂3
i µ3 + o

(
(µ ∨ φ)4

)
.

The 1st order term is zero because θ∗∗ is a stationary point (Result 1). The 2nd order term is zero by the

definition of the eigenvector. Note that
(
−4p̂2 + p̂(8− 3π) + π − 4

)
has its maximum, π − 4 < 0, when

p̂ = 0. Since µ > 0, L (θ∗ + ∆θ)− L (θ∗) < 0 if and only if ∑ ε̂3
i > 0. Therefore, θ∗∗ with p̂ ∈ [0, 1) is a local

maximizer if and only if ∑ ε̂3
i > 0. When p̂ = 0, the expression goes back to the one in Waldman (1982).

Result 4. θ∗∗ with p̂ = 1 is a local maximizer of the likelihood function if ∑n
i=1 ε̂3

i> 0.

Proof. The two eigenvectors associated with the zero eigenvalues are


0

1

0

0


and


0

0

0

1


.
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Let

∆θ = µ


0

1

0

0


+ φ


0

0

0

1


=


0

µ

0

φ


.

Because λ ≥ 0 and p ≤ 1, µ > 0 and φ < 0 . ∆θ has only two non-zero arguments. Thus, the relevant

parameters would be λ and p. By Taylor’s expansion,

L (θ∗ + ∆θ)− L (θ∗) =
1
24

[
Lλλλλ µ4 + 4Lλλλp µ3φ + 6Lλλpp µ2φ2 + 4Lλppp µφ3 + Lpppp φ4

]
+ o

(
(µ ∨ φ)5

)
= −1

4
µ4 +

1
3σ̂3

√
2
π

n

∑
i=1

ε̂3
i µ3φ− n

π
µ2φ2 + o

(
(µ ∨ φ)5

)

The 1st order term is zero because θ∗∗ is a stationary point (Result 1). The 2nd order term is zero by the

definition of the eigenvector. The third order term is zero because L (θ∗ + ∆θ)− L (θ∗) in Result 3 is zero

when p̂ = 1. Since φ < 0 and µ > 0, 1
3σ̂3

√
2
π

n
∑

i=1
ε̂3

i µ3φ < 0 when ∑ ε̂3
i > 0. Therefore, if ∑ ε̂3

i > 0,

L (θ∗ + ∆θ)− L (θ∗) < 0 and θ∗∗ with p̂ = 1 is a local maximizer.
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