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Abstract

This paper proposes a long run variance estimator for conducting inference in time series
regression models that combines the nonparametric approach with a cluster approach. The basic
idea is to divide the time periods into non-overlapping clusters. The long run variance estimator
is constructed by first aggregating within clusters and then kernel smoothing across clusters or
applying the nonparametric series method to the clusters with Type II discrete cosine transform.
We develop an asymptotic theory for test statistics based on these “smoothed-clustered” long
run variance estimators. We derive asymptotic results holding the number of clusters fixed and
also treating the number of clusters as increasing with the sample size. For the kernel smoothing
approach, these two asymptotic limits are different whereas for the cosine series approach, the
two limits are the same. When clustering before kernel smoothing, we find that the “fixed-
number-of-clusters” asymptotic approximation works well whether the number of clusters is
small or large. Finite sample simulations suggest that the naive i.i.d. bootstrap mimics the
fixed-number-of-clusters critical values. The simulations also suggest that clustering before
kernel smoothing can reduce over-rejections caused by strong serial correlation although at a
cost of power. When there is a natural way of clustering, clustering can reduce over-rejection
problems and achieve small gains in power for the kernel approach. In contrast, the cosine series
approach does not benefit from clustering.
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1 Introduction

This paper proposes long run variance estimators for conducting inference in time series regression

models that combines the traditional nonparametric kernel smoothing approach (Newey and West

(1987) and Andrews (1991)) or equally weighted cosine (EWC) series approach (Grenander and

Rosenblatt (1953), Phillips (2005), Müller (2007), Sun (2013) and Lazarus, Lewis, Stock andWatson

(2018)) with a dependent clusters approach (Bester, Conley and Hansen (2011)). We label this

combined long run variance estimator the “smoothed-clustered” long run variance estimator.

The basic idea is to divide the time periods into non-overlapping clusters with equal number

of observations. From a practical perspective, dividing the data into non-overlapping clusters of

equal size is a straightforward mechanical process because of the natural ordering of time series

data. Applicability is wide. In some cases, data structures naturally lend themselves to equal

sized clustering. For example, consider time series data for markets that are open on weekdays

but are closed on weekends.1 It is natural to cluster by week in which case each cluster has five

observations. One could also naturally cluster by two week periods or other integer groupings of

weeks.

The smoothed-clustered long run variance estimator is constructed by first aggregating within

clusters and then kernel smoothing across clusters or applying nonparametric series methods to

these aggregated series with Type II discrete cosine transform. For the kernel smoothing case,

the approach is similar in spirit to the approach proposed by Driscoll and Kraay (1998) in panel

settings. We develop asymptotic theory for test statistics based on the smoothed-clustered long

run variance estimator under the assumption that the time series data is weakly dependent and

covariance stationary. We obtain results under two asymptotic approaches that are commonly used

in the cluster inference literature. The first approach treats the number of observations per cluster

as fixed as the number of clusters increases with the sample size. The second approach holds the

number of clusters fixed as the number of observations per cluster increases with the sample size.

The “large-number-of-clusters” framework has received some attention in the recent economet-

rics literature. Hansen and Lee (2019) provide a comprehensive asymptotic distribution theory for

large numbers of independent clusters. Related work by Djogbenou, MacKinnon and Nielsen (2019)

establishes conditions under which the wild bootstrap allows valid inference with a large number of

independent clusters. Both frameworks allow general dependence within clusters, substantial het-

erogeneity across clusters, and the number of observations within clusters can be fixed or increasing.

In contrast, because of our weakly dependent and covariance stationary time series setting, clusters

1Of course, other data structures may imply clusters with unequal observations such as clusters based on business
cycle timing. If the underlying time series data is covariance stationary and weakly dependent across recessions
and booms, then the timing of clusters won’t matter as long as unequal cluster sizes are taken into account. We
conjecture that valid inference can proceed using unequal cluster sizes however with more tedious technical details.
If the covariance structure depends on whether the economy is in a recession or not, then timing of clusters matters.
If recession timing is latent and the wrong dates are used, this could complicate inference. We leave an analysis of
latent cluster timing to future work.
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are dependent but they are homogeneous.

The “fixed-number-of-clusters” framework has been used by Hansen (2007), Bester et al. (2011)

and Ibragimov and Müller (2010) among others. Hansen (2007) obtained results in panel models

with large time dimensions and Ibragimov and Müller (2010) proposed a statistic based on aggre-

gation of subsample estimators. Bester et al. (2011) obtain results for cluster inference in spatial

settings that include weakly dependent covariance stationary time series as a special case. Without

smoothing, our approach falls within the framework of Bester et al. (2011) as a special case. With

smoothing, our approach is an extension of Bester et al. (2011) to a case where dependent clusters

have a distance measure (time) related to strength of correlation across clusters.

For the kernel smoothing approach, the large-number-of-clusters results we develop are closely

linked to the fixed-b results obtained by Vogelsang (2012) for Driscoll and Kraay (1998) statistics in

panel settings. We show that in the large number of clusters setting, robust test statistics follow the

standard fixed-b limits obtained by Kiefer and Vogelsang (2005) assuming that the kernel bandwidth

is treated as a fixed proportion of the number of clusters. In contrast, in the fixed-number-of-clusters

setting, we obtain a different asymptotic limit that depends on the number of clusters. For the

EWC approach, we show that the large-number-of-clusters and the fixed-number-of-clusters limits

are the same when the number of cosine basis functions is held fixed. One might expect the relative

accuracy of the two asymptotic approximations to depend on the number of clusters relative to

the sample size in the kernel smoothing method. However, we find in a simulation study that the

fixed-number-of-clusters asymptotic approximation works well whether the number of clusters is

small or large as does the common limit for the EWC approach. The simulations also suggest that

the naive i.i.d. bootstrap mimics the fixed-number-of-clusters critical values of the kernel smoothing

approach.

Outside of data structures that suggest natural clustering, the motivation for clustering before

kernel or EWC series smoothing is as follows. Aggregating within clusters works well when serial

correlation is relatively strong within clusters. Under a weak dependence and covariance stationarity

assumption, cluster averages will be asymptotically independent of each other. However, in finite

samples, the cluster averages will be correlated and taking this into account by smoothing can

help reduce finite sample over-rejection problems. In our finite sample simulations, clustering

before kernel smoothing does reduce over-rejections caused by strong serial correlation but, not

surprisingly, at a cost of power. In contrast for the EWC approach, clustering does not further

reduce over-rejections. In fact clustering may induce some small additional over-rejections in the

presence of strong serial correlation. For cases where the data has a natural cluster structure,

clustering that matches the structure in the data can help reduce over-rejection problems and

deliver some modest gains in power for the kernel approach. In contrast, clustering does not

improve the performance of the EWC approach.

The rest of the paper is organized as follows. In the next section the model is given and it lays

out the inference problem with long run variance estimators and the relevant test statistics. Section
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3 provides asymptotic results for test statistics based on the smoothed-clustered long run variance

estimators. Section 4 explores the finite sample properties of the test statistics in a simple location

model. For the kernel smoothing approach, we use both asymptotic and bootstrap critical values.

Section 5 discusses some data dependent bandwidth approaches focusing on mean square error

(MSE) optimal bandwidths (Andrews (1991)) and the test-optimal bandwidths (Sun, Phillips and

Jin (2008)). Section 6 concludes. Key proofs are given in an appendix. Theory for the case where

the number of clusters does not evenly divide the sample is provided in Supplemental Appendix A

along with derivations for the data dependent bandwidths. Tables of asymptotic critical values for

kernel tests for the fixed-number-of-clusters case are given in Supplemental Appendix B.

2 Clustered Smoothed Standard Errors and Test Statistics

Consider the time series regression model,

yt = x′tβ + ut, t = 1, . . . , T,

where β is a (k × 1) vector of regression parameters, xt is a (k × 1) vector of regressors, and ut is

a mean zero error process and T is the sample size. The ordinary least squares (OLS) estimator of

β is

!β =

"
T#

t=1

xtx
′
t

$−1 T#

t=1

xtyt.

Suppose we divide the time series into G contiguous, non-overlapping clusters of equal size nG so

that T = nGG.2 The OLS estimator can be rewritten using cluster notation as

!β =

%

&
G#

g=1

g nG#

t=(g−1)nG+1

xtx
′
t

'

(
−1

G#

g=1

g nG#

t=(g−1)nG+1

xtyt.

Conceptually, this way of rewriting !β can be viewed as the outcome of rearranging the data into

G time periods with nG “cross-section” units per time period resulting in an artificial panel data

structure. From this artificial panel perspective, !β is the pooled OLS estimator of β. Plugging in

for yt and centering around β gives

!β − β =

%

&
G#

g=1

Sxx
g

'

(
−1

G#

g=1

vg,

where

vg =

g nG#

t=(g−1)nG+1

vt and Sxx
g =

g nG#

t=(g−1)nG+1

xtx
′
t

2Cases where G does not evenly divide T is easily handled but notation is more tedious. See Supplemental
Appendix A.
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with vt = xtut. Note that vg and Sxx
g are within cluster sums.

The kernel smoothed-clustered long run variance estimator of vt is constructed as follows. Let

!vt = xt!ut, where !ut = yt − x′t
!β are the OLS residuals. Define the within cluster sums of !vt as

!vg =

gnG#

t=(g−1)nG+1

!vt, g = 1, . . . , G.

Using !vg, the autocovariance matrix estimator is computed as

!Γj = G−1
G#

g=j+1

!vg!v
′
g−j for j ≥ 0.

Let K(x) be a kernel function such that K(x) = K(−x), K(0) = 1, |K(x)| ≤ 1, K(x) be continuous at

x = 0, and
)∞
−∞K2(x) < ∞. LetMG be the bandwidth parameter. The clustered heteroskedasticity

autocorrelation robust (CHAC) variance estimator of vg is defined as

!Ω
CHAC

= !Γ0 +

G−1#

j=1

K
*

j

MG

+*
!Γj +

!Γ
′
j

+
=

1

G

G#

g=1

G#

h=1

K
*
|g − h|
MG

+
!!vg!!v

′
h.

Notice that the CHAC estimator gives full weight for observations within clusters, a feature that

the usual nonparametric kernel HAC estimator does not have. Smoothing across clusters accounts

for finite sample serial correlation across clusters and is a generalization of the cluster estimator

proposed by Bester et al. (2011). The Bester et al. (2011) estimator is obtained when !Ω
CHAC

= !Γ0,

i.e. when no smoothing is used across clusters. Also note that when G = T and nG = 1, the CHAC

estimator becomes the usual kernel HAC estimator. Therefore, the CHAC estimator nests the

traditional kernel approach and the time series cluster approach.

The second long run variance estimator we consider is the EWC estimator (Müller (2007))

applied to the clusters and is defined as

!Ω
CEWC

=
1

B

B#

j=1

!Ωj ,
!Ωj = !Λj

!Λ′
j , !Λj =

,
2

G

G#

g=1

cos

*
(g − 0.5)

G
πj

+
!vg,

where CEWC denotes “cluster before using equally weighted cosine” estimator. The CEWC esti-

mator was proposed by Müller (2007) and is a special case of the orthonormal series estimator of

Sun (2013). It has been recommended in practice in a recent paper by Lazarus et al. (2018).

Suppose we are testing a linear hypothesis about β of the formH0 : Rβ = r againstH1 : Rβ ∕= r,

where R is a m × k matrix of known constants with full rank and r is a m × 1 vector of known

constants. Define Wald statistics for l ∈ {CHAC,CEWC} as

Wl =
-
R!β − r

.′ /
R!VlR

′
0−1 -

R!β − r
.
,
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where

!Vl = G

%

&
G#

g=1

Sxx
g

'

(
−1

!Ω
l

%

&
G#

g=1

Sxx
g

'

(
−1

.

For the case of m = 1, we can define a t-statistic as

tl =

-
R!β − r

.

1
R!VlR′

.

For the analysis of data dependent bandwidth approaches, it is useful to note that while !Ω
l

is an estimator of the long-run variance of vg, it is easy to verify that n−1
G

!Ω
l
is an estimator of

the long run variance of vt. Using
2G

g=1 S
xx
g =

2T
t=1 xtx

′
t and T = nGG, we can rewrite !Vl in the

conventional form

!Vl = T

"
T#

t=1

xtx
′
t

$−1

!Ωl

"
T#

t=1

xtx
′
t

$−1

where !Ωl = n−1
G

!Ω
l
.

3 Asymptotic Theory

We obtain asymptotic results for the CHAC and CEWC statistics using two distinct asymptotic

nestings for G and nG. The first approach is to let G increase with the sample size, T , but hold nG

fixed, i.e. large-G, fixed-nG asymptotics. The second approach is to hold G fixed and let nG increase

with T , i.e. fixed-G, large-nG asymptotics. Results for the two approaches are treated separately

as they require slightly different regularity conditions. Throughout, the symbol “⇒”denotes weak

convergence of a sequence of stochastic process to a limiting stochastic process.

3.1 Large-G, fixed-nG case

In this section we assume that G → ∞ and nG is held fixed as T → ∞. By definition, nG = T/G,

so we are implicitly assuming that G is a fixed proportion of the sample size. Vogelsang (2012)

developed fixed-b results for the Driscoll and Kraay (1998) panel analogues to WCHAC and tCHAC

for the case of large number of time periods and fixed number of cross-section units. Vogelsang

(2012) provided conditions under which the fixed-b limits are equivalent to the standard fixed-b

limits obtained by Kiefer and Vogelsang (2005). Given the natural similarities between WCHAC

or tCHAC and the panel statistics, it is not surprising that the large-G, fixed-nG limits of WCHAC

and tCHAC follow the standard fixed-b limits under suitable regularity conditions. The asymptotic

theory in Vogelsang (2012) mainly relies on weak dependence and covariance stationarity in the time

dimension of the panel. In our model, because we divide the pure time series into non-overlapping
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clusters, as long as the original time series satisfies weak dependence and covariance stationarity,

the regularity conditions used by Vogelsang (2012) hold here as well.

For the CEWC statistics, Sun (2013) provides relevant assumptions to obtain results with the

number of cosine terms, B, held constant, i.e. fixed-B limits. The assumptions used by Sun (2013)

are weaker than those required for the fixed-b kernel smoothing tests. This is because the limit of

the CEWC test statistics are based on a multivariate central limit theorem (CLT) which is implied

by the functional central limit theorem (FCLT) required for fixed-b asymptotic theory.

The following assumptions are sufficient to obtain results in the large-G, fixed-nG case.

Assumption A 1. nG is fixed and G → ∞ as T → ∞.

2. For r ∈ (0, 1], G−1
2[rG]

g=1

2gnG

t=(g−1)nG+1 xtx
′
t ⇒ rQc, where Qc is non-singular.

3. E(vg) = 0 and G−1/2
2[rG]

g=1 vg ⇒ ΛcWk(r), where Wk(r) is an k × 1 vector of independent

standard Wiener processes and ΛcΛ
′
c = Ωc is the k × k long run variance matrix ( 2π times

the zero frequency spectral density matrix) of vg.

Assumptions A2 and A3 are the usual high level assumptions used to obtain fixed-b asymptotic

results. Note that

1

G

[rG]#

g=1

gnG#

t=(g−1)nG+1

xtx
′
t =

1

G

[rG]nG#

t=1

xtx
′
t =

nG

T

[ r
nG

T ]nG#

t=1

xtx
′
t,

where the second equality is obtained by plugging in G = T/nG. If the second moment of xt

satisfies a law of large numbers (LLN) uniformly in r, i.e. T−1
2[rT ]

t=1 xtx
′
t ⇒ rQ, then Assumption

A2 is satisfied with Qc = nGQ because (nG/T )
2[(r/nG)T ]nG

t=1 xtx
′
t is asymptotically equivalent to

(nG/T )
2[rT ]

t=1 xtx
′
t. Assumption A3 states that a FCLT holds for the scaled partial sums of vg.

As with Assumption A2, we can show that n
1/2
G T−1/2

2[ r
nG

T ]nG

t=1 vt is asymptotically equivalent to

n
1/2
G T−1/2

2[rT ]
t=1 vt and it follows that

Ωc = nGΩ

where Ω is the long run variance of vt.

Under primitive assumptions for a FCLT such as vt being a mean zero δ-order (for some δ > 2)

covariance stationary process that is α-mixing of size −ν/(ν − 2),3 then vg is also a mean zero

δ-order (for some δ > 2) covariance stationary process that is α-mixing of the same size because

finite sums (nG < ∞) of α-mixing processes are also α-mixing with the same size. See White (2001).

Therefore, if a FCLT holds for the scaled partial sums of vt, then it will hold for the scaled partial

sums of vg. In general, Assumptions A2 and A3 are slightly weaker than assumptions usually used

to obtain fixed-b results and are sufficient for the following theorem. The following theorem gives

the asymptotic behavior of OLS, WCHAC , and WCEWC . The proof is provided in the Appendix.

3Phillips and Durlauf (1986) provide sufficient conditions for vt to satisfy a FCLT.
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Theorem 1 Suppose that Assumption A is satisfied. Then, the following holds as T → ∞.

(a) Asymptotic normality of OLS:

√
G
-
!β − β

.
=

%

& 1

G

G#

g=1

Sxx
g

'

(
−1

G−1/2
G#

g=1

vg ⇒ (Qc)
−1 ΛcWk(1).

(b) CHAC result: Let K∗
b (r, s) = K

3
r−s
b

4
−

) 1
0 K

3
r−τ
b

4
dτ −

) 1
0 K

3
t−s
b

4
dt +

) 1
0

) 1
0 K

3
t−τ
b

4
dtdτ .

Assume MG = bG where b ∈ (0, 1] is fixed. Then,

!Ω
CHAC

⇒ Λc

5 1

0

5 1

0
K∗

b (r, s)dWk(r)dWk(s)
′Λ′

c,

and under H0,

WCHAC ⇒ Wm(1)′
65 1

0

5 1

0
K∗

b (r, s)dWm(r)dWm(s)′
7−1

Wm(1).

In the case of m = 1,

tCHAC ⇒ W1(1)1) 1
0

) 1
0 K∗

b (r, s)dW1(r)dW1(s)
.

(c) CEWC result: Let ξ
(d)
j

i.i.d.∼ N(0, Id). Assume B is held fixed. Then,

!Ω
CEWC

=
1

B

B#

j=1

!Ωj ⇒ Λc
1

B

B#

j=1

ξ
(k)
j ξ

(k)′
j Λ′

c,

and under H0,

FCEWC =
B −m+ 1

mB
WCEWC ⇒ Fm,B−m+1,

where Fm,B−m+1 is the F distribution with degrees of freedom (m,B −m + 1). In the case of

m = 1,

tCEWC ⇒ W1(1)8
1
B

B2
j=1

-
ξ
(1)
j

.2

d
= tB,

where tB is the t-distribution with degrees of freedom B.

When no smoothing is used, the results in Theorem 1(b) share some similarities with the large-G

results in Hansen and Lee (2019) and Djogbenou et al. (2019) although there are key differences in

the assumptions used in those papers. As b → 0 or B → ∞, no smoothing is used after clustering,

and it is well known in the fixed-smoothing literature that the limiting random variables in Theorem

1(b) become standard chi-square and normal.
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While the cluster-only limits are the same as in Hansen and Lee (2019) and Djogbenou et al.

(2019), the assumptions used here and in those papers have key differences. First, Assumption A

allows dependence across homogeneous clusters. In contrast, Hansen and Lee (2019) and Djogbenou

et al. (2019) assume clusters are independent but within cluster dependence can be strong and

heterogenous across clusters. Second, Assumption A makes cluster sizes equal and holds the cluster

size fixed. In contrast, Hansen and Lee (2019) and Djogbenou et al. (2019) use assumptions that

allow clusters to have different sizes that potentially increase with the sample size. Theorem 1(b)

suggests the results of Hansen and Lee (2019) and Djogbenou et al. (2019) could continue to hold

with weak dependence across clusters at least for the case of clusters with equal and fixed size.

An interesting theoretical question is whether Theorem 1(b) continues to hold with unequal

cluster sizes or cluster sizes that increase with G. While the technical details are likely to be

complicated given the reliance on a FCLT for the kernel smoothing case, as long as the suitably

scaled vg converge to nondegenerate random variables, it is reasonable to conjecture that a version

of Theorem 1(b) continues to hold if cluster sizes increase with G.

3.2 Fixed-G, large-nG case

Now suppose we flip the asymptotic nesting so that G is held fixed as T → ∞ in which case

nG → ∞. In this case, the number of observations per cluster is a fixed proportion of the sample

size. With the number of clusters fixed, the LLN, FCLT and multivariate CLT work within the

clusters rather than across the clusters. If the limit theorems hold for the original time series, this

implies that the limit theorems hold within clusters. The following assumptions are sufficient to

obtain results in the fixed-G, large-nG case.

Assumption B 1. G is fixed and nG → ∞ as T → ∞.

2. For r ∈ (0, 1], T−1
2[rT ]

t=1 xtx
′
t ⇒ rQ where Q is non-singular.

3. For r ∈ (0, 1], T−1/2
2[rT ]

t=1 vt ⇒ ΛWk(r), where Ω = ΛΛ′ is the k×k long run variance matrix

of vt.

Assumptions B2 and B3 state that a LLN applies to T−1
2[rT ]

t=1 xtx
′
t uniformly in r and a FCLT

applies to the scaled partial sum of vt. The following theorem gives the asymptotic behavior of

OLS, WCHAC , and WCEWC and the proof is provided in the Appendix.

Theorem 2 Under Assumption B, the following holds as T → ∞.

(a) Asymptotic normality of OLS:

√
T
-
!β − β

.
=

%

& 1

T

G#

g=1

Sxx
g

'

(
−1

T−1/2
G#

g=1

vg ⇒ Q−1ΛWk(1).
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(b) CHAC result: Assume MG = bG where b ∈ (0, 1] is fixed. Then

1

nG

!Ω
CHAC

⇒ ΛPk(G, b)Λ′,

where

Pk(G, b) =

5 1

0

5 1

0
K

%

&
2G

j=1 j1
/
(j−1)+1

G ≤ r ≤ j
G

0
−

2G
j=1 j1

/
(j−1)+1

G ≤ s ≤ j
G

0

bG

'

( d9Wk(r)d9Wk(s)
′,

with d9Wk(r) = dWk(r)− drWk(1), and

WCHAC ⇒ Wm(1)′ [Pm(G, b)]−1Wm(1).

In the case of m = 1,

tCHAC ⇒ W1(1):
P1(G, b)

.

(c) CEWC result: Assume B is held fixed. Then,

G

T
!Ω
CEWC

=
1

B

B#

j=1

!Ωj ⇒ Λ
1

B

B#

j=1

ξ
(k)
j ξ

(k)′
j Λ′,

and under H0,

FCEWC =
B −m+ 1

mB
WCEWC ⇒ Fm,B−m+1,

In the case of m = 1,

tCEWC ⇒ W1(1)8
1
B

B2
j=1

-
ξ
(1)
j

.2

d
= tB.

The fixed-G, large-nG asymptotic limits of WCHAC and tCHAC in Theorem 2(b) are different

from the standard fixed-b asymptotic limits found in Theorem 1(b). The limits in Theorem 2(b)

depend on both G and b. Therefore, different asymptotic critical values are needed across b for

each value of G. Table B in the Supplemental Appendix B tabulates asymptotic critical values for

tCHAC with the Bartlett kernel for a range of values for G. When G is small, the critical values that

correspond to a given value of b are substantially different from the standard fixed-b critical values

and have fatter tails. This makes sense because using a small value of G is equivalent to using a

large bandwidth. As G increases, clustering is reduced and critical values approach the standard

fixed-b critical values. A simple way to implement the fixed-G, fixed-b critical values is to use the

i.i.d. bootstrap following Gonçalves and Vogelsang (2011). Finite sample simulations reported in

the next section indicate that the i.i.d. bootstrap works well in the simple location model for both

small and large values of G.
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When no smoothing is used, the limits of the CHAC statistics simplify to the scaled t and

F limits obtained by Bester et al. (2011) for case with strong homogeneity across clusters. This

is expected given that Assumption B implies homogeneity across clusters and Assumption B is

essentially a time series version of the assumptions used by Bester et al. (2011) in their spatial

setting. Bester et al. (2011) also provide results that allow heterogeneity across clusters and they

appeal to a result in Ibragimov and Müller (2010) to provide critical values based on a bounding

argument. It is not obvious how those arguments would work when there is smoothing across

clusters and we leave such an investigation for future work.

The limit of the CEWC statistics is the same in the fixed-G, large-nG case as in the large-G,

fixed-nG case. This suggests that the critical values from the F and t distributions will perform

similarly in practice regardless of whether G is small or large. Our finite sample simulations in the

next section show that this is indeed the case unless serial correlation is very strong.

4 Finite Sample Performance

In this section, we examine the finite sample performance of the test statistics based on the CHAC

and CEWC estimators using a simple location model. The data generating process (DGP) we

consider is

yt = β + ut,

ut = ρut−1 + εt + θεt−1,

where u0 = ε0 = 0, εt ∼ i.i.d.N(0, 1) with ρ ∈ {−0.5, 0, 0.5, 0.8, 0.9}, θ ∈ {−0.5, 0, 0.5}. Results are
given for the sample size T = 60 with number of clusters G ∈ {2, 3, 4, 5, 6, 10, 12, 15, 60} that are fac-
tors of 60 so that clusters evenly divide the sample. With this DGP, we test the null hypothesis H0 :

β = 0 against the alternative H1 : β ∕= 0 at a nominal level of 5%. When computing the CHAC t-

statistic, we use the Bartlett, QS and Daniell kernels with M ∈ {1, 2, . . . , 9, 10, 12, 15, 30, 40, 50, 60}.
When computing the CEWC t-statistic, we consider B ∈ {1, . . . , 59}. Here we focus on represen-

tative results for ρ ∈ {0, 0.5, 0.8}, θ ∈ {0} and we exclude the Daniell kernel given the very similar

results to the QS kernel. Tables with a full set of empirical null rejections and size-adjusted power

are available upon request.

In this simple location model, the CHAC and CEWC t-statistics are computed as

tl =
!β8

G

*
T−1!Ω

l
T−1

+ =

√
T !β,
!Ω
l

nG

, l ∈ {CHAC,CEWC},

where

!Ω
CHAC

=
1

G

G#

g=1

G#

h=1

k

*
|g − h|
MG

+
!vg!vh
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and

!Ω
CEWC

=
1

B

B#

j=1

!Ωj ,
!Ωj = !Λ2

j , !Λj =

,
2

G

G#

g=1

cos

*
(g − 0.5)

G
πj

+
!vg

with !vg =
2gnG

t=(g−1)nG+1 !vt, !vt = yt − !β, and !β = T−1
2T

t=1 yt.

4.1 Empirical Null Rejections

In this section, we examine empirical null rejection probabilities of the CHAC and CEWC test

statistics. Note that when G = T , it follows that nG = 1 and the CHAC and CEWC estimators

simplify to the usual HAC and EWC variance estimators without clustering. For the CHAC

approach the pure time series clustering approach of Bester et al. (2011) is obtained when M = 1.

We compute empirical null rejection probabilities using 10, 000 replications. We reject the

null hypothesis whenever |tl| > tc, l = CEWC,CHAC, where tc is a critical value. For the

CEWC approach, regardless of whether G is considered as fixed or G → ∞, the critical value is

the 97.5% percentile of the tB distribution (Theorem 1(c) and 2(c)). On the other hand, for the

CHAC approach, the limiting distributions of the test statistic differ depending on whether G is

considered fixed or G → ∞. When G → ∞, the asymptotic critical value is the 97.5% percentile

of the standard fixed-b asymptotic distribution with b = MG/G (Theorems 1(b)). For the fixed-G

case the critical value is the 97.5% percentile of the distribution given in Theorem 2(b).

These nonstandard asymptotic critical values are obtained using standard simulation methods.

Given that the asymptotic critical values in the fixed-G case depend on bothG andMG, a convenient

alternative is to use the bootstrap to obtain critical values. We use the naive i.i.d. bootstrap critical

values and the overlapping moving block bootstrap with the block length l = nG, thereby matching

the block size with the number of observations per cluster. Gonçalves and Vogelsang (2011) showed

that the naive moving block bootstrap with block length fixed (including l = 1) or increasing but

slower than the sample size (l2/T → 0) has the same limiting distribution as the fixed-b asymptotic

distribution for statistics like the CHAC statistics as long as the fixed-b limit is asymptotically

pivotal. It is not obvious whether the bootstrap distribution will mimic the large-G or the fixed-G

limit given that the results of Gonçalves and Vogelsang (2011) apply to both asymptotic nestings

for G. Intuitively, we should expect the bootstrap to mimic the fixed-G limit when G is small but

to mimic the large-G limit for large values of G. Because the small-G limit critical values approach

the large-G critical values as G increases, a reasonable conjecture is that the bootstrap will mimic

the small-G critical values. As the simulations results show, this is indeed the case.

Table 1 reports empirical null rejections for tCHAC using the Bartlett kernel for large-G and

fixed-G asymptotic critical values. Similar results were obtained for other kernels and are omitted.

The results are arranged in the table to hold the amount of smoothing, b = MG/G, the same across

values of G (across rows). The table has two panels because of the way values of b correspond to

the integer values of G. Combining the panels would result in blank table entries making it more

difficult to see patterns clearly.
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For the ρ = 0 case, rejection rates suggest that the fixed-G asymptotic critical values (right

panel) work better, as expected, than the large-G critical values (left panel) when G is small.

Both critical values work well when G is large. For ρ = 0.5, 0.8, there are three distinct patterns.

First, as ρ approaches 1, over-rejections occur and become more pronounced. This is well known.

Second, for a given value of G, increasing b tends to reduce over-rejections caused by positive serial

correlation. This is also well known and expected. Third, for a given b, using a small number of

clusters helps to reduce over-rejections. This is a benefit of using time series clustering and the

finding intuitively makes sense. There is no down-weighting across autocovariances within clusters

which helps accommodate stronger serial correlation. The smaller the value of G, the larger the

number of observations per cluster and the greater robustness to serial correlation.

Tables 2-3 report empirical null rejections for tCHAC for the Bartlett and QS kernels using

bootstrap critical values. The left panels report rejection probabilities using the overlapping nG

block bootstrap whereas the right panels report rejections using the i.i.d bootstrap. The first

obvious pattern is that i.i.d. bootstrap rejections for the Bartlett kernel in Table 2 are nearly

identical to the fixed-G rejections in Table 1 even when G is large. This confirms the conjecture

that the i.i.d. bootstrap mimics the fixed-G asymptotic distribution and is a convenient way to

obtain fixed-G critical values. The performance of the block bootstrap depends on the strength of

the serial correlation and the size of blocks. The middle sized blocks, corresponding to moderate

values of G, can result in less over-rejections than the i.i.d. bootstrap. However for small values of

G (large block size) we see substantial under-rejections. This is caused by the block length being

too large relative to the sample size. As long as G is not too small, the block bootstrap with l = nG

works reasonably well. If we compare rejections across the two kernels, we see that the QS kernel

tends to suffer less from over-rejections than the Bartlett kernel. This is well known in the fixed-b

literature.

Empirical null rejections for tCEWC are reported in Table 4. Similar to the tCHAC tables, the

rejections are reported with the amount of smoothing (B) held fixed in each row. It is important

to keep in mind that 1/B roughly corresponds to b for the tCHAC statistics. Therefore, small

(large) values of B are equivalent to large (small) bandwidths. With no serial correlation in the

data (ρ = 0), rejections are close to zero regardless of the values of B and G. With positive serial

correlation, we see that for a given value of G, increasing B (equivalent to a decrease in b) leads to

over-rejections as expected. For given values of B, rejections are stable and close to 5% even for

ρ = 0.8 regardless of the value of G. Therefore, clustering does not matter much when B is small.

For large values of B, there are over-rejections that are similar in magnitude to those of tCHAC

with the QS kernel when 1/B is matched with b. This makes sense given that the CEWC variance

estimator is closely related to the QS CHAC estimator (see Lazarus et al. (2018)). However, the

impact of G is different between tCEWC and tCHAC . Consider the case of B = 3 with ρ = 0.8.

Increasing G leads to less over-rejections for tCEWC . This is in contrast to tCHAC with both the

Bartlett and QS kernels where, with b = 0.33, increasing G tends to increase over-rejections. This
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increase is more pronounced for the Bartlett kernel. While the contrast between tCHAC and tCEWC

with respect to G is difficult to understand intuitively, what is clear from Table 4 is that clustering

either doesn’t have an impact on null rejections for tCEWC or can inflate over-rejections when serial

correlation is strong. There do not appear to be benefits of clustering before smoothing for the

EWC approach.

4.2 Size-Adjusted Power

It is well established in the fixed-b literature that there is a trade-off between size distortions

and power with respect to the amount of smoothing used for the variance estimator. Given that

clustering can reduce over-rejections for a given value of b for tCHAC , one would expect there to be

cost in terms of power. This is indeed the case. Tables 5 and 6 report size-adjusted power for the

tCHAC and tCEWC statistics. Power is averaged (integrated) across β ∈ (0, 5]. We see the expected

relationship between smoothing and power. As the bandwidth increases, power of tCHAC tends to

decrease. Similarly, as B decreases (1/B increases), power of tCEWC decreases. For a given value

of b, clustering by decreasing G tends to reduce the power of the tCHAC statistics. As expected, the

reductions of over-rejections delivered by clustering result in reduced power. In contrast, clustering

has very little impact on power of tCEWC again confirming there are no benefits of clustering with

EWC approach.

4.3 Weekends Missing Example

Our finite sample simulations results suggest that in the simple location model, clustering can

be used to reduce over-rejections problems of tCHAC caused by strong serial correlation but this

reduction comes at the price of reduced power. In contrast, there is no material impact on tCEWC

from clustering. We now investigate a simple data structure where clustering is natural to see

whether our finite sample results continue to hold. Suppose we have daily data but observations

for the weekends are systematically missing (markets could be closed on the weekends). Here, the

data can naturally be divided into clusters with five observations, or more generally, into clusters

with a number of observations that are evenly divisible by five.

While there are multitudes of ways to generate daily data with missing weekends, we chose a

simple specification. We use the DGP from the previous simulations and generate samples with 84

observations, i.e. twelve seven-day weeks. We then drop every 6th and 7th observation to match a

missing weekends specification giving T = 60 observations. Given our AR(1) structure, adjacent

observations within a week have correlation ρ whereas adjacent end of week and beginning of week

observations have correlation ρ3. We can think of the data as being composed of 12 weeks with 5

observations per week. Using G = 12 becomes natural and matches the correlation structure of the

data.

Tables 7 and 8 report empirical null rejections for tCHAC for the Bartlett and QS kernels

respectively. We no longer hold smoothing constant across values of G. Instead we report results
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for values of MG (not b) in each row. This will permit us to see how lining up the choice of G with

the cluster structure of the data matters. We only report results for ρ = 0.5 and 0.8. Results for

ρ = 0 are not interesting in the missing weekend case.

For a given value of MG, there is a general pattern of over-rejections becoming more severe as

G increases. This intuitively makes sense because larger values of G include more down-weighting

when computing the kernel HAC variance estimator. However, this pattern is not monotonic in G

especially for small values of MG. While rejections tend to increase as G increases, rejections tend

to decrease when G increases from 5 to 6 and from 10 to 12. It is exactly when G = 12 that the

clustering in the variance estimation matches the cluster structure of the data. The case of G = 6

has clusters with exactly two weeks of data. These results show that matching the clustering of

tCHAC to the cluster structure of the data can reduce over-rejections relative to the clustering that

does not match the data.

Because increasing G for a given value of MG tends to increase power, one might conjecture

that moving from G = 10 to G = 12 not only reduces size distortions but does so without a cost

in terms of power. This is indeed the case as Table 9 shows. The average size-adjusted power

is generally increasing in G and specifically increases when G goes from 5 to 6 or from 10 to 12.

Therefore, at least for our simple weekend missing data structure, it is advantageous to match the

variance estimator clustering with the cluster structure of the data in terms of both size distortions

and power.

Weekends missing results for tCEWC are given in Tables 10 and 11 for null rejections and size-

adjusted power respectively. Similar to the tCHAC statistics, we see reductions in over-rejections

with G going from 5 to 6 and from 10 to 12 especially for the larger values of B in the table. While

null rejections are less distorted with G = 12 relative to G = 10, null rejections with G = 60 (no

clustering) are essentially the same as G = 12. Furthermore, average size-adjusted power for tCEWC

with G = 12 is essentially the same as with G = 60. Again, there is no advantage of clustering for

the EWC approach.

5 Data Dependent Bandwidths for the CHAC Approach

The finite sample simulations suggest that clustering before smoothing can be useful for the CHAC

approach if a researcher wants to reduce size distortion caused by strong serial correlation or if

the time series has a natural cluster structure like the missing weekends case. In this section we

briefly examine the extent to which existing data dependent bandwidths methods can be used to

choose the bandwidth and/or cluster size for the CHAC approach. The results we sketch here

are appropriate for the large-G, fixed-nG case. It is not obvious how to extend existing results in

the literature to the fixed-G, large-nG case and we leave such theoretical developments to future

research.

We consider both the MSE-optimal (Andrews (1991)) and test-optimal (Sun et al. (2008),

Sun (2014)) bandwidth approaches. For simplicity of exposition, we continue to focus on the
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simple location model, i.e. the case where xt only contains an intercept regressor. We provide

calculations for the widely used autoregressive lag one (AR(1)) plug-in method. Derivations are

provided in Supplemental Appendix A.

Recall that in the large-G case, !Ω
CHAC

is an estimator of Ωc, the long run variance of vg. When

the time series is covariance stationary, n−1
G

!Ω
CHAC

is an estimator of Ω, the long run variance of

vt because Ωc = nGΩ. We apply existing bandwidth results to n−1
G

!Ω
CHAC

.

According to the AR(1) plug-in approach, vt is approximated by the AR(1) process vt =

ρvt−1 + εt. It then follows from Amemiya and Wu (1972) that vg is an ARMA(1, 1) process. We

show in Supplemental Appendix A that

Ω(1)
c = Ω(1), (1)

Ω(2)
c = Ω(2) (1 + ρnG)(1− ρ)

(1− ρnG)(1 + ρ)
. (2)

Here, Ω
(q)
c =

2∞
j=−∞ |j|qΓcj and Ω(q) =

2∞
j=−∞ |j|qΓj , where Γcj and Γj are the autocovariance

functions of vg and vt respectively.

5.1 MSE-optimal Bandwidth

Following Andrews (1991):

MSE

*
1

nG

!Ω
CHAC

+
=

1

n2
G

MSE

*
!Ω
CHAC

+
≈ 1

n2
G

;

<
"
kqΩ

(q)
c

MG

$2

+ 2c2Ω
2
c

MG

G

=

> ,

where MG is the bandwidth and q ∈ [0,∞) is the largest integer such that kq = limx→0
1−K(x)
|x|q < ∞,

and c2 =
)
K(x)2dx. Replacing Ωc with nGΩ, plugging in for Ω

(q)
c using (1) and (2), and using

T = nGG gives

MSE

*
1

nG

!Ω
CHAC

+
=

?
@

A

-
k1Ω(1)

nGMG

.2
+ 2c1T

−1Ω2nGMG q = 1
-
k2Ω(2)

nGM2
G

(1+ρnG )(1−ρ)
(1−ρnG )(1+ρ)

.2
+ 2c2T

−1Ω2nGMG q = 2.

In the case of q = 1 (Bartlett kernel), the MSE formula depends on nG and MG only through the

product nGMG. Therefore, minimization of the MSE can only determine the product but not nG

and MG individually. Notice also in the q = 1 case that if we replace nGMG with MT we obtain

the MSE formula for the case of no clustering. Therefore, if we let M∗
T denote the MSE-optimal

bandwidth for the case of no clustering, then it immediately follows for a given cluster size, nG,

that nGM
∗
G = M∗

T or M∗
G = M∗

T /nG.

A practical recommendation for the Bartlett kernel can be made from this result. First, com-

pute M∗
T , the MSE-optimal bandwidth without clustering. Once the cluster size has been chosen,
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perhaps based on the cluster structure of the data, use the bandwidth M∗
G = M∗

T /nG for the CHAC

estimator.

The case of q = 2 (QS kernel) is more complicated because of the (1+ρnG )(1−ρ)
MG(1−ρnG )(1+ρ) term in

the MSE formula. We show in Supplemental Appendix A that, for the empirically relevant case

of positive autocorrelation (ρ > 0), the MSE minimization has a corner solution with n∗
G = 1 in

which case no clustering is used and the usual bandwidth formula for M is obtained. Should an

empirical researcher decide to use a cluster size different from 1, the MSE-optimal bandwidth can

be computed as

M∗
G = M∗

T

B*
(1 + !ρnG)(1− !ρ)
(1− !ρnG)(1 + !ρ)

+2 1

nG
3

C1/5

,

where !ρ is the same estimated value of ρ used to calculate M∗
T .

5.2 Test-optimal Bandwidth

Following Sun et al. (2008) (SPJ), the test-optimal bandwidth minimizes the SPJ objective function,

which is a weighted average of the approximate type I and the type II errors of the CHAC test

statistic. Without going into details, the SPJ objective function shares the same essential features

as the MSE objective function with respect to nG and MG. In the q = 1 case, the SPJ objective

function depends on nG and MG only through the product nGMG. In the q = 2 case, n∗
G = 1 is

obtained as a corner solution. Should an empirical researcher decide to use a given cluster size, nG,

the test-optimal bandwidths are given by

M∗
G =

?
@

A
M∗

T /nG q = 1

M∗
T

-
1

nG
2
(1+!ρnG )(1−!ρ)
(1−!ρnG )(1+!ρ)

.1/3
q = 2,

where M∗
T is the test-optimal bandwidth without clustering and !ρ is the same estimated value of ρ

used to calculate M∗
T . For the derivation, see Supplemental Appendix A.

6 Conclusion

This paper proposes a long run variance estimator for conducting inference in time series regres-

sion models that combines the nonparametric approach with a cluster approach. The basic idea

is to divide the time periods into non-overlapping clusters. The long run variance estimator is

constructed by first aggregating within clusters and then kernel smoothing across clusters or ap-

plying the nonparametric series method to the clusters with Type II discrete cosine transform.

We develop an asymptotic theory for test statistics based on these “smoothed-clustered” long run

variance estimators. We derive asymptotic results holding the number of clusters fixed and also

treating the clusters as increasing with the sample size. For the kernel approach, these two asymp-

totic limits are different and nonstandard whereas for the cosine series approach, the two limits

are the same and have standard t or F distributions. When clustering before kernel smoothing, we
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find that the “fixed-number-of-clusters” asymptotic approximation works well whether the number

of clusters is small or large. The moving blocks bootstrap (including the naive i.i.d. bootstrap) is

a convenient way to obtain critical values that are asymptotically equivalent to critical values from

the “fixed-number-of-clusters” limiting distribution.

Finite sample simulations for the simple location model suggest that clustering before kernel

smoothing can reduce over-rejections caused by strong serial correlation although at a cost of power

as typical. In contrast, clustering before using the cosine series approach does not tend to reduce

over-rejection problems. When there is a natural way of clustering, such as weekly data with

missing weekends, then clustering can reduce over-rejection problems with some potential gains in

power for the kernel approach. In contrast, there are no gains to clustering for the cosine series

approach.

For the kernel approach we analyze data dependent bandwidth approaches configured for the

AR(1) plug-in approach. For the Bartlett kernel, both MSE-optimal and test-optimal approaches

only determine the product, nGMG, and not the cluster size and kernel bandwidth separately. For

kernels in the same class as the QS kernels, both bandwidth approaches give nG = 1 in which case

no clustering is used. An empirical researcher using the Bartlett kernel should use clustering if

either there is a desire to reduce over-rejections caused by strong serial correlation or there is a

natural cluster structure to the data. For the QS kernel clustering has no distinct advantage except

when the data has a natural cluster structure. Once the number of clusters has been chosen, data

dependent bandwidths can be computed as a simple functions of the non-clustered data dependent

bandwidths.
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Table 1: CHAC: Empirical Null Rejections Using Asymptotic Critical Values, Bartlett Kernel

G → ∞ Fixed G

ρ MG

G values of G values of G

6 12 30 60 6 12 30 60

0 0.17 0.071 0.056 0.049 0.048 0.049 0.050 0.049 0.049
0.50 0.072 0.056 0.051 0.050 0.048 0.050 0.051 0.051
0.83 0.067 0.052 0.046 0.048 0.050 0.050 0.048 0.050
1.00 0.067 0.052 0.048 0.047 0.050 0.049 0.048 0.048

0.5 0.17 0.092 0.074 0.075 0.075 0.062 0.069 0.075 0.077
0.50 0.083 0.070 0.070 0.069 0.058 0.065 0.068 0.069
0.83 0.079 0.067 0.067 0.067 0.057 0.065 0.069 0.070
1.00 0.080 0.068 0.068 0.068 0.057 0.065 0.069 0.070

0.8 0.17 0.158 0.151 0.153 0.153 0.113 0.141 0.153 0.155
0.50 0.122 0.115 0.115 0.115 0.089 0.107 0.114 0.115
0.83 0.118 0.113 0.112 0.112 0.094 0.109 0.114 0.116
1.00 0.119 0.114 0.114 0.114 0.094 0.110 0.115 0.116

CHAC: Empirical Null Rejections Using Asymptotic Critical Values, Bartlett Kernel (cont’d)

G → ∞ Fixed G

ρ MG

G values of G values of G

3 6 12 15 30 60 3 6 12 15 30 60

0 0.33 0.135 0.071 0.055 0.052 0.048 0.048 0.050 0.049 0.050 0.049 0.047 0.048
0.67 0.130 0.069 0.053 0.051 0.049 0.049 0.048 0.049 0.050 0.048 0.049 0.051
1.00 0.132 0.067 0.052 0.049 0.048 0.047 0.048 0.050 0.049 0.048 0.048 0.048

0.5 0.33 0.145 0.086 0.069 0.070 0.068 0.068 0.054 0.060 0.064 0.066 0.068 0.068
0.67 0.141 0.083 0.068 0.068 0.066 0.066 0.052 0.058 0.064 0.066 0.067 0.068
1.00 0.142 0.080 0.068 0.068 0.068 0.068 0.052 0.057 0.065 0.067 0.069 0.070

0.8 0.33 0.171 0.125 0.120 0.120 0.119 0.119 0.064 0.093 0.113 0.114 0.118 0.120
0.67 0.163 0.119 0.113 0.113 0.114 0.113 0.063 0.091 0.108 0.110 0.114 0.116
1.00 0.166 0.119 0.114 0.114 0.114 0.114 0.063 0.094 0.110 0.112 0.115 0.116

Note: Table 1 reports empirical null rejection rates for the Bartlett kernel CHAC approach based on simulated

asymptotic critical values with b = MG/G fixed. The left panel contains rejection rates for G → ∞ with nG-fixed

case and the right panel contains rejection rates for nG → ∞ with G-fixed.
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Table 2: CHAC: Empirical Null Rejections Using Bootstrap Critical Values, Bartlett Kernel

G block bootstrap i.i.d. bootstrap

ρ MG

G values of G values of G

6 12 30 60 6 12 30 60

0 0.17 0.036 0.043 0.049 0.051 0.049 0.050 0.051 0.051
0.50 0.038 0.043 0.049 0.051 0.049 0.051 0.051 0.051
0.83 0.037 0.043 0.048 0.050 0.048 0.050 0.049 0.050
1.00 0.037 0.044 0.049 0.050 0.048 0.050 0.050 0.050

0.5 0.17 0.044 0.062 0.074 0.079 0.063 0.071 0.077 0.079
0.50 0.042 0.059 0.068 0.070 0.059 0.065 0.069 0.070
0.83 0.041 0.057 0.068 0.070 0.060 0.065 0.070 0.070
1.00 0.041 0.057 0.068 0.070 0.060 0.064 0.069 0.070

0.8 0.17 0.075 0.125 0.153 0.158 0.116 0.144 0.156 0.158
0.50 0.065 0.096 0.113 0.117 0.090 0.109 0.116 0.117
0.83 0.066 0.097 0.112 0.116 0.094 0.108 0.115 0.116
1.00 0.066 0.099 0.113 0.116 0.094 0.110 0.115 0.116

CHAC: Empirical Null Rejections Using Bootstrap Critical Values, Bartlett Kernel (cont’d)

G block bootstrap i.i.d. bootstrap

ρ MG

G values of G values of G

3 6 12 15 30 60 3 6 12 15 30 60

0 0.33 0.031 0.036 0.045 0.044 0.048 0.051 0.052 0.049 0.050 0.051 0.050 0.051
0.67 0.032 0.037 0.043 0.045 0.047 0.050 0.049 0.049 0.050 0.049 0.050 0.050
1.00 0.032 0.037 0.044 0.045 0.049 0.050 0.049 0.048 0.050 0.050 0.050 0.050

0.5 0.33 0.032 0.043 0.058 0.061 0.069 0.070 0.055 0.060 0.066 0.067 0.070 0.070
0.67 0.030 0.043 0.059 0.062 0.066 0.068 0.054 0.060 0.063 0.066 0.068 0.068
1.00 0.030 0.041 0.057 0.062 0.068 0.070 0.054 0.060 0.064 0.067 0.069 0.070

0.8 0.33 0.030 0.065 0.102 0.107 0.118 0.121 0.065 0.094 0.114 0.115 0.120 0.121
0.67 0.030 0.067 0.096 0.104 0.112 0.116 0.064 0.092 0.108 0.111 0.115 0.116
1.00 0.030 0.066 0.099 0.104 0.113 0.116 0.064 0.094 0.110 0.111 0.115 0.116

Note: Table 2 reports empirical null rejection rates for the Bartlett kernel CHAC approach based on the overlapping

nG block bootstrap (left panel) and the i.i.d. bootstrap (right panel) critical values. The nominal level is 5% and

T = 60.
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Table 3: CHAC: Empirical Null Rejections Using Bootstrap Critical Value, QS Kernel

G block bootstrap i.i.d. bootstrap

ρ MG

G values of G values of G

6 12 30 60 6 12 30 60

0 0.17 0.036 0.045 0.050 0.052 0.050 0.050 0.052 0.052
0.50 0.044 0.046 0.052 0.051 0.053 0.050 0.052 0.051
0.83 0.045 0.046 0.050 0.050 0.051 0.049 0.049 0.050
1.00 0.045 0.046 0.048 0.049 0.051 0.049 0.048 0.049

0.5 0.17 0.043 0.057 0.058 0.059 0.063 0.062 0.060 0.059
0.50 0.046 0.052 0.055 0.055 0.056 0.055 0.056 0.055
0.83 0.046 0.051 0.052 0.052 0.055 0.053 0.052 0.052
1.00 0.046 0.051 0.053 0.053 0.054 0.053 0.052 0.053

0.8 0.17 0.073 0.097 0.103 0.104 0.112 0.113 0.105 0.104
0.50 0.054 0.062 0.065 0.067 0.069 0.066 0.066 0.067
0.83 0.051 0.057 0.061 0.062 0.064 0.061 0.062 0.062
1.00 0.052 0.059 0.060 0.062 0.063 0.061 0.061 0.062

CHAC: Empirical Null Rejections Using Bootstrap Critical Values, QS Kernel (cont’d)

G block bootstrap i.i.d. bootstrap

ρ MG

G values of G values of G

3 6 12 15 30 60 3 6 12 15 30 60

0 0.33 0.031 0.040 0.045 0.049 0.051 0.051 0.052 0.051 0.051 0.052 0.053 0.051
0.67 0.030 0.045 0.046 0.049 0.049 0.050 0.047 0.052 0.050 0.052 0.050 0.050
1.00 0.029 0.045 0.046 0.047 0.048 0.049 0.047 0.051 0.049 0.049 0.048 0.049

0.5 0.33 0.032 0.043 0.052 0.053 0.054 0.056 0.055 0.057 0.055 0.057 0.056 0.056
0.67 0.028 0.045 0.051 0.052 0.053 0.053 0.053 0.054 0.054 0.053 0.052 0.053
1.00 0.027 0.046 0.051 0.051 0.053 0.053 0.050 0.054 0.053 0.054 0.052 0.053

0.8 0.33 0.029 0.058 0.069 0.070 0.072 0.074 0.064 0.079 0.075 0.075 0.074 0.074
0.67 0.028 0.052 0.058 0.060 0.063 0.062 0.065 0.064 0.062 0.063 0.062 0.062
1.00 0.027 0.052 0.059 0.060 0.060 0.062 0.061 0.063 0.061 0.062 0.061 0.062

Note: Table 3 reports empirical null rejection rates for the QS kernel CHAC approach based on the overlapping

nG block bootstrap (left panel) and the i.i.d. bootstrap (right panel) critical values. The nominal level is 5% and

T = 60.
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Table 4: CEWC: Empirical Null Rejections Using tB Critical Values

ρ B values of G

2 3 4 5 6 10 12 15 20 30 60

0 1 0.050 0.049 0.052 0.050 0.053 0.052 0.051 0.053 0.051 0.053 0.053
2 0.050 0.049 0.048 0.050 0.051 0.050 0.051 0.048 0.050 0.049
3 0.051 0.051 0.049 0.053 0.050 0.051 0.050 0.050 0.050
4 0.051 0.052 0.051 0.049 0.049 0.051 0.050 0.050
5 0.049 0.050 0.049 0.050 0.050 0.048 0.050
6 0.050 0.051 0.052 0.049 0.051 0.050

0.5 1 0.049 0.051 0.050 0.053 0.052 0.051 0.048 0.051 0.050 0.050 0.050
2 0.053 0.053 0.052 0.051 0.052 0.052 0.050 0.051 0.051 0.051
3 0.055 0.058 0.056 0.056 0.054 0.055 0.055 0.054 0.054
4 0.061 0.061 0.058 0.058 0.056 0.057 0.056 0.055
5 0.062 0.061 0.060 0.058 0.058 0.057 0.055
6 0.065 0.064 0.062 0.060 0.060 0.058

0.8 1 0.054 0.055 0.051 0.054 0.051 0.051 0.051 0.052 0.052 0.051 0.051
2 0.064 0.064 0.063 0.063 0.060 0.059 0.058 0.059 0.058 0.058
3 0.080 0.078 0.079 0.076 0.074 0.074 0.073 0.073 0.072
4 0.092 0.096 0.089 0.087 0.087 0.086 0.085 0.085
5 0.114 0.107 0.103 0.101 0.098 0.097 0.096
6 0.125 0.121 0.118 0.117 0.114 0.113

Note: Table 4 reports empirical null rejection rates for the CEWC approach. The nominal level is 5% and T = 60.
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Table 6: CEWC: Average Size-adjusted Power for β ∈ (0, 5]

ρ B values of G

2 3 4 5 6 10 12 15 20 30 60

0 1 0.739 0.745 0.724 0.736 0.719 0.726 0.732 0.727 0.733 0.724 0.715
2 0.901 0.902 0.903 0.902 0.901 0.901 0.901 0.902 0.901 0.903
3 0.924 0.924 0.925 0.922 0.924 0.924 0.924 0.924 0.924
4 0.932 0.932 0.932 0.933 0.933 0.932 0.933 0.932
5 0.938 0.937 0.937 0.937 0.937 0.938 0.937
6 0.940 0.939 0.939 0.940 0.939 0.939

0.5 1 0.529 0.524 0.525 0.507 0.517 0.521 0.536 0.522 0.523 0.521 0.526
2 0.804 0.805 0.808 0.808 0.807 0.807 0.810 0.808 0.808 0.807
3 0.852 0.848 0.853 0.850 0.852 0.850 0.850 0.850 0.849
4 0.866 0.865 0.866 0.866 0.867 0.865 0.865 0.865
5 0.874 0.876 0.876 0.876 0.875 0.877 0.876
6 0.881 0.880 0.880 0.881 0.881 0.881

0.8 1 0.247 0.253 0.267 0.256 0.265 0.263 0.263 0.258 0.261 0.263 0.262
2 0.546 0.546 0.544 0.549 0.545 0.550 0.548 0.549 0.550 0.550
3 0.641 0.636 0.637 0.638 0.640 0.639 0.639 0.640 0.640
4 0.670 0.674 0.677 0.677 0.678 0.677 0.678 0.678
5 0.695 0.696 0.698 0.699 0.699 0.698 0.698
6 0.710 0.711 0.714 0.714 0.715 0.714

Note: Table 6 reports average size adjusted power for the CEWC approach. The nominal level is 5% and

T = 60. The alternative hypothesis is β ∈ (0, 5].
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Table 9: CHAC: Average Size-adjusted Power for β ∈ (0, 5], Weekends Missing (T = 60 out of 84)

ρ M values of G

2 3 4 5 6 10 12 15 30 60

Barlett Kernel
0.5 1 0.587 0.821 0.868 0.881 0.888 0.899 0.902 0.903 0.907 0.908

2 0.587 0.811 0.856 0.868 0.879 0.892 0.898 0.900 0.905 0.907
3 0.811 0.855 0.862 0.871 0.886 0.893 0.896 0.903 0.906
4 0.855 0.864 0.868 0.883 0.888 0.891 0.900 0.905
5 0.864 0.870 0.879 0.883 0.887 0.899 0.903
6 0.870 0.875 0.880 0.883 0.896 0.903
10 0.875 0.878 0.877 0.887 0.899

0.8 1 0.283 0.598 0.699 0.728 0.743 0.767 0.775 0.777 0.782 0.785
2 0.283 0.566 0.664 0.697 0.715 0.750 0.760 0.765 0.777 0.783
3 0.566 0.661 0.677 0.697 0.729 0.743 0.753 0.772 0.779
4 0.661 0.676 0.690 0.716 0.730 0.736 0.766 0.776
5 0.676 0.692 0.705 0.721 0.726 0.759 0.774
6 0.692 0.700 0.714 0.717 0.754 0.773
10 0.701 0.705 0.701 0.726 0.760

QS Kernel
0.5 1 0.587 0.820 0.867 0.880 0.887 0.898 0.902 0.903 0.906 0.908

2 0.587 0.791 0.834 0.848 0.865 0.884 0.892 0.897 0.903 0.907
3 0.762 0.804 0.819 0.838 0.868 0.877 0.887 0.900 0.905
4 0.774 0.799 0.816 0.851 0.864 0.875 0.896 0.903
5 0.781 0.798 0.836 0.850 0.864 0.891 0.902
6 0.786 0.819 0.836 0.853 0.886 0.900
10 0.780 0.798 0.814 0.863 0.892

0.8 1 0.283 0.595 0.694 0.725 0.742 0.763 0.771 0.774 0.780 0.785
2 0.283 0.528 0.605 0.652 0.682 0.732 0.747 0.758 0.774 0.781
3 0.483 0.532 0.581 0.622 0.699 0.716 0.735 0.769 0.777
4 0.496 0.541 0.565 0.662 0.688 0.710 0.758 0.774
5 0.508 0.531 0.624 0.656 0.686 0.748 0.773
6 0.511 0.594 0.628 0.663 0.736 0.769
10 0.509 0.541 0.572 0.687 0.748

Note: Table 9 reports average size adjusted power for the weekends missing case for the Bartlett

and QS kernels CHAC approach. The nominal level is 5%, and the alternative hypothesis is

β ∈ (0, 5].
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Table 10: CEWC: Empirical Null Rejections Using tB Critical Values, Weekends Missing (T = 60 out of 84)

ρ B values of G

2 3 4 5 6 10 12 15 20 30 60

0.5 1 0.043 0.050 0.052 0.049 0.048 0.048 0.048 0.049 0.049 0.047 0.047
2 0.052 0.051 0.053 0.050 0.052 0.050 0.050 0.052 0.050 0.050
3 0.049 0.053 0.051 0.054 0.052 0.052 0.053 0.053 0.053
4 0.056 0.052 0.057 0.053 0.054 0.054 0.054 0.053
5 0.052 0.059 0.052 0.054 0.057 0.054 0.054
6 0.059 0.054 0.053 0.055 0.055 0.053

0.8 1 0.052 0.050 0.053 0.057 0.053 0.053 0.053 0.053 0.053 0.052 0.052
2 0.059 0.058 0.057 0.058 0.056 0.054 0.056 0.055 0.055 0.055
3 0.061 0.065 0.061 0.061 0.059 0.060 0.059 0.059 0.059
4 0.081 0.071 0.072 0.067 0.069 0.068 0.067 0.067
5 0.080 0.082 0.077 0.079 0.077 0.076 0.075
6 0.096 0.087 0.088 0.086 0.085 0.083

Note: Table 10 reports empirical null rejection rates for the weekends missing case for the CEWC approach. The

nominal level is 5%.

Table 11: CEWC: Average Size-adjusted Power for β ∈ (0, 5], Weekends Missing (T = 60 out of 84)

ρ B values of G

2 3 4 5 6 10 12 15 20 30 60

0.5 1 0.587 0.554 0.532 0.564 0.572 0.569 0.569 0.561 0.567 0.582 0.582
2 0.821 0.823 0.822 0.826 0.822 0.826 0.827 0.822 0.824 0.826
3 0.868 0.867 0.866 0.866 0.864 0.864 0.864 0.864 0.863
4 0.881 0.880 0.879 0.879 0.881 0.879 0.879 0.879
5 0.888 0.886 0.888 0.888 0.886 0.887 0.886
6 0.892 0.892 0.894 0.893 0.892 0.892

0.8 1 0.283 0.300 0.288 0.259 0.285 0.282 0.286 0.282 0.283 0.283 0.283
2 0.598 0.595 0.603 0.599 0.597 0.600 0.602 0.603 0.602 0.603
3 0.699 0.695 0.696 0.697 0.699 0.698 0.697 0.697 0.699
4 0.728 0.726 0.728 0.730 0.727 0.730 0.729 0.729
5 0.743 0.746 0.744 0.747 0.744 0.745 0.745
6 0.754 0.755 0.756 0.756 0.755 0.755

Note: Table 11 reports average size adjusted power for the CEWC approach. The nominal level is 5%, and

the alternative hypothesis is β ∈ (0, 5].
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Appendix

In this appendix we provide proofs for Theorems 1 and 2. Theorem 1 provides asymptotic results for the G → ∞
with nG fixed case. The proof closely follows proofs in the existing literature (Sun (2013) and Vogelsang (2012)).
Here we provide key arguments for completeness.

Proof of Theorem 1(a): Under Assumption A, the following result is straightforward:

√
G
-
!β − β

.
=

%

& 1

G

G#

g=1

Sxx
g

'

(
−1

G−1/2
G#

g=1

vg ⇒ Q−1
c ΛcWk(1). (3)

□

Proof of Theorem 1(b): When the kernel function satisfies relevant conditions that the kernel function is
symmetric, piecewise smooth with K(0) = 1 and

)∞
0 K(x)xdx < ∞, the kernel function Kb(r, s) = K((r− s)/b)

on [0, 1] × [0, 1] can be expanded by Mercer’s Theorem as Kb(r, s) =
2∞

n=1 νnfn(r)fn(s), where νn is the
eigenvalue of the kernel and fn(s) is the corresponding eigenfunction. Then, under Assumption A, the following
holds with b fixed (See Sun (2014) for details):

!Ω
CHAC
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5 1

0

5 1

0
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b (r, s)dWk(r)Wk(s)
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c. (4)
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b (r, s) = K ((r − s)/b)−

) 1
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) 1
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b (r, s)dWm(r)dWm(s)′Wm(1).

The weak convergence (⇒) result is straightforward from (3) and (4). In case of m = 1,

tCHAC ⇒ W1(1)1) 1
0

) 1
0 K∗

b (r, s)dW1(r)dW1(s)
.

□

Proof of Theorem 1(c): Under Assumption A, the relevant LLN for Sxx
g and the multivariate CLT for vg are

satisfied. Furthermore, the cosine basis functions φj(r) =
√
2cos (rπj) are orthonormal with

) 1
0 φj(r)dr = 0.

Therefore, the calculations in Sun (2013) apply. First, note that

!Λj =
1√
G
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*
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G

+
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5 1

0
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φj(r)dr = 0

d
= Λcξ

(k)
j , ξ

(k)
j =

5 1

0
φj(r)dWk(r)

i.i.d.∼ N(0, Ik).

It follows that
!Ωj = !Λj

!Λ′
j ⇒ Λcξ

(k)
j ξ

(k)′

j Λ′
c,
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which implies
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Here ξ
(k)
j are i.i.d. N(0, Ik) distributed. Hence, by definition,

2B
j=1 ξ

(k)
j ξ

(k)′

j is Wishart distribution with B

degrees of freedom and covariance matrix Ik:
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Because φj(r) are orthonormal basis functions, Wm(1) and {ξ(m)
j } are independent. Then, by definition, the

limiting distribution of WCEWC is Hotelling’s T-squared distribution with dimensionality parameter m and B
degrees of freedom, T2(m,B). Using the relationship between the Hotelling’s T -squared distribution and the F
distribution, it follows that

FCEWC =
B −m+ 1

mB
WCEWC ⇒ Fm,B−m+1,

where Fm,B−m+1 is the F distribution with degrees of freedom (m,B −m+ 1). When m = 1,

tCEWC ⇒ tB,

which is the student t distribution with degree of freedom B. □

Next, we provide a proof for Theorem 2 which gives asymptotic results for the nG → ∞, G-fixed case.

Proof of Theorem 2(a): When G is fixed, Assumption B2 implies
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□

Proof of Theorem 2(b): Recall that Assumption B states that the LLN and FCLT are satisfied for the
unclustered series vt. Hence,
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Expanding the kernel function Kb(r, s) = K((r − s)/b) on [0, 1] × [0, 1] by Mercer’s Theorem as Kb(r, s) =2∞
n=1 νnfn(r)fn(s), where νn is the eigenvalue of the kernel and fn(s) is the corresponding eigenfunction (See

Sun (2014) for details) gives
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Then under the null hypothesis H0, the WCHAC statistic follows the limiting distribution as defined below:
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An alternative approach to obtaining a limiting result for the variance estimator follows Kiefer and Vogelsang
(2005). First note that
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This result is straightforward given (5) and (6). Using summation by parts
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2
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′
h

⇒ Λ

;

<
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Ẅk
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+
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MG

+
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*
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Ẅk

*
h

G

+′
=

>Λ′.

For the Bartlett kernel, the specific result is

G
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4
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6
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5
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5
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G
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G

6
Ẅk
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□

Proof of Theorem 2(c): Straightforward calculations give

*
T

G

+−1/2

Λj =

G#

g=1

√
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*
g − 0.5

G
πj

+
T−1/2!vg

⇒ Λ

G#

g=1

√
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*
g − 0.5

G
πj

+*
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- g

G

.
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*
g − 1

G

+
− 1

G
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+
(8)

= Λ
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√
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*
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G
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+*
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- g

G

.
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*
g − 1

G
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(9)

d
= Λ

G#

g=1

√
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*
g − 0.5

G
πj

+
Zg, Zg

i.i.d.∼ N

*
0,

1

G
Ik

+

d
= Λξj , ξj

i.i.d.∼ N (0, Ik) . (10)

The weak convergence (⇒) in (8) is obvious using (7):

T−1/2!vg ⇒ Λ

6
Ẅk

- g

G

.
− Ẅk

*
g − 1

G

+7
= Λ

6
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- g
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.
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*
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G

+
− 1

G
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7
.

The equality in (9) is also straightforward because
2G

g=1 cos
/-

(g−0.5)πj
G

.0
= 0 for j ∈ {1, . . . , B}, B ≤ G, as
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shown below:
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cos
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G
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@

A
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D
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.

2
-
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.

D
E

F
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sin (πj) sin
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.

1− cos
-
πj
G
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Finally, the last equivalence in distribution
-

d
=
.

in (10) holds from the following two equalities. First, for

j ∈ {1, . . . , G− 1},
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1

G
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*
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G
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3
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4 -
e

iπj
G − e

−iπj
G

.

2
-
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-
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D
E
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= 1 +
1

G

sin (2πj) sin
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G

.
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-
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G
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Second, {ξj} is a sequence of independent random variables because for j ∕= k, j + k < 2G,

G#

g=1

cos

*
g − 0.5

G
πj

+
cos

*
g − 0.5

G
πk

+
=

1

2
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*
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+
+ cos

*
g − 0.5

G
π (j + k)

++
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From (10),
G

T
!Λj

!Λ′
j ⇒ Λξ

(k)
j ξ

(k)′

j Λ′

and the asymptotic limit of the CEWC estimator is

G

T
!Ω
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=
G

T

1

B
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j=1

!Λj
!Λ′
j ⇒ Λ

1

B

B#
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ξ
(k)
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By definition,
2B

j=1 ξ
(k)
j ξ

(k)′

j is a Wishart distribution:
2B

j=1 ξ
(k)
j ξ

(k)′

j
d
= Wk (Ik, B). The limits FCEWC and

tCEWC easily follow using similar arguments as in the proof of Theorem 1(c).
□
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