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Abstract

In this paper, we investigate the properties of heteroskedasticity and autocorrelation robust (HAR)
test statistics in time series regression settings when observations are missing. We primarily focus on
the non-random missing process case where we treat the missing locations to be fixed as T → ∞ by
mapping the missing and observed cutoff dates into points on [0, 1] based on the proportion of time
periods in the sample that occur up to those cutoff dates. We consider two models, the amplitude
modulated series (Parzen (1963)) regression model, which amounts to plugging in zeros for missing
observations, and the equal space regression model, which simply ignores the missing observations.
When the amplitude modulated series regression model is used, the fixed-b limits of the HAR test
statistics depend on the locations of missing observations but are otherwise pivotal. When the equal
space regression model is used, the fixed-b limits of the HAR test statistics have the standard fixed-b
limits as in Kiefer and Vogelsang (2005). We discuss methods for obtaining fixed-b critical values with
a focus on bootstrap methods and find the naive i.i.d. bootstrap with missing dates fixed to be an
effective and practical way to obtain the fixed-b critical values.
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1 INTRODUCTION

It is not unusual to encounter a time series data set with missing observations but in a relatively simple

context of time series regression, there appears to be a sparsity of work related to missing data issues.

Most of the times series literature on missing data focuses on the estimation of dynamic models where

the goal is to forecast missing observations and little appears to be known about the impact of missing

data on heteroskedasticity and autocorrelation robust (HAR) tests in regression settings. This paper

attempts to fill this void by analyzing the impact of missing data on HAR tests based on nonparametric

kernel estimators of long run variances (HAR variance estimators).

We consider the case where the missing process is exogenous to the underlying latent process and

the estimators are identified by the observed data. Hence we are not proposing a new estimator. Our

focus rather lies on the impact of missing data on the long run variance estimator and further deriving

a reference distribution for HAR inference which captures the impact of missing observations. We con-

sider two models, the amplitude modulated (AM) series and equal space (ES) regression models. The

ES regression model, which is formally considered in Datta and Du (2012), simply ignores the missing

observations and treats the observations as if they are equally spaced in time. The AM regression model,

first proposed by Parzen (1963), characterizes the missing observations as being driven by a 0-1 binary

missing process. In terms of a regression model this amounts to plugging in zeros for missing observa-

tions. The literature following Parzen (1963) mainly focused on investigating the impact of missing data

on the consistent estimation of spectral density functions of the underlying latent series. See, for exam-

ple, Scheinok (1965), Bloomfield (1970), Neave (1970), and Dunsmuir and Robinson (1981).1 While HAR

inference makes use of spectral estimation methods, with the exception of Datta and Du (2012), there

appears to be no attempt in the literature to link this earlier literature on spectral density estimation to

regression inference with missing data.

The AM approach appears to be intuitively more sensible than the ES approach because the time dis-

tances between observations become skewed for many pairs of time periods for the ES approach while

the time distances are preserved for the AM approach. This would seem particularly relevant for testing

based on HAR variance estimators (e.g.,Newey and West (1987), Andrews (1991)) given that those esti-

1Scheinok (1965) and Bloomfield (1970) consider estimating a spectral density function of the observed process (with
missing data) with independent Bernoulli and dependent Bernoulli missing processes respectively. Neave (1970) estimates
a spectral density function with initially scarce data. Later work by Dunsmuir and Robinson (1981) investigated consistent
estimation of the spectral density of the underlying latent process.
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mators employ quadratic forms with weights that depend on the time distances of pairs of observations.

One might reasonably conjecture (and we also conjectured) that the ES approach would be problem-

atic. In practice the AM approach is prominent, but the ES approach is still used. For example, in the

statistical package Stata, the command newey with the ’force’ option computes Newey-West standard

errors using the AM approach whereas the command newey2 with the ’force’ option or the command

hacreg computes Newey-West standard errors based on the ES approach. Surprisingly, we find that the

ES approach can be justified theoretically with the fixed-b asymptotic framework and works better than

one might expect.

Our work is most closely related to Datta and Du (2012) who also analyze the AM and ES approaches

in time series regressions with missing data. Their results provide a good foundation for the traditional

small bandwidth asymptotic theory on HAR tests which appeals to consistency of the HAR variance es-

timators. Our results, on the other hand, are based on fixed-b asymptotic framework as in Kiefer and

Vogelsang (2005). The fixed-b results that we obtain can be viewed as useful refinements to the tradi-

tional theory because it is now well established that fixed-b theory provides improved approximations

by capturing much of the impact of kernel and bandwidth choices on finite sample distributions of HAR

tests (see e.g., Jansson (2002), Sun et al. (2008), Gonçalves and Vogelsang (2011)). In addition, we show

that it is possible to capture the impact of missing data on HAR robust tests via the asymptotic reference

distribution. This is done by mapping the missing locations into points on [0, 1] as fixed proportions of

the total time span. This mapping is conceptually the same as mapping a given number of break dates

to corresponding break points in a model with structural change and obtaining asymptotic results hold-

ing the break points fixed as T → ∞. Having critical values that depend on the missing dates improves

the reliability of finite sample inference.

The following are the main theoretical findings in the paper. (1) When the missing process is non-

random, the fixed-b limits of the HAR Wald statistics computed from the AM approach depend on the

locations of missing observations in addition to the kernel function and the bandwidth used but are

otherwise pivotal. (2) When the missing data are simply ignored (ES approach), we find that the fixed-b

limits of the HAR Wald statistics are the standard fixed-b distribution as in Kiefer and Vogelsang (2005).

(3) We also investigate methods for obtaining fixed-b critical values with a focus on bootstrap methods.

We show that the results of Gonçalves and Vogelsang (2011) extend to both the AM and ES approaches.

The naive i.i.d. bootstrap is a particularly good option for obtaining valid fixed-b critical values especially

if the dates of the missing observations are taken as given when generating bootstrap samples.
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It is important to draw similarities and differences between the results in this paper and recent work

by Bester et al. (2016) who obtained fixed-b results in spatial settings. In spatial settings the sample

region can have varied shapes and the shape can affect the sampling distribution of HAR tests. Bester

et al. (2016) show that the shape of the sampling region is captured by fixed-b theory. This is similar

to our result where the fixed-b limit depends on the dates (locations) of missing data when the missing

process is non-random. One might wonder whether the results of Bester et al. (2016) can be directly

applied to missing data in time series settings because Bester et al. (2016) obtain results using random

field theory and a time series process is a one-dimensional random field. The answer is no because

Bester et al. (2016) restrict attention to two-dimensional sampling regions with quadrant-wise mono-

tonic boundaries which rules out holes in the sampling region. Missing observations generate holes in

the sampling region and therefore the results in Bester et al. (2016) do not directly apply.

The rest of the paper is organized as follows. Section 2 defines the models, estimators, and relevant

test statistics. Section 3 develops fixed-b asymptotic results for the estimators and the test statistics

defined in Section 2. Section 4 discusses simulation of the asymptotic critical values with a focus on

bootstrap methods. Finite sample performance is examined in Section 5 by Monte Carlo simulations.

Attention is focused on the relative performance of simulated asymptotic critical values compared with

bootstrap critical values and the relative performance of the AM approach compared with the ES ap-

proach. Practical recommendations are given. Section 6 concludes. Formal proofs for the fixed-b results

are given in Appendices A-B for the AM and ES approaches respectively.

2 MODELS AND TEST STATISTICS

2.1 Models

Suppose that a researcher is interested in the regression model

y∗t = x∗
′

t β + u∗t , (t = 1, 2, . . . , T) , (1)

where y∗t (scalar) and x∗t (k× 1 vector) are latent variables that are not fully observed in the missing data

case. Suppose that the k× 1 vector of parameters, β, is identified by the moment condition

E(m (w∗t ; β)) = 0, (2)
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where w∗′t = (y∗t , x∗
′

t ) and

m (w∗t ; β) = x∗t (y
∗
t − x∗

′
t β) = x∗t u∗t .

Let {at} be a missing process where

at =


1 when all g elements in w∗t are observed at time t

0 otherwise.

If we assume that the mechanism generating the missing data does not generate an endogeneity prob-

lem, then the moment condition (2) above implies

E(atm (w∗t ; β)) = E
(

atx∗t (y
∗
t − x∗

′
t β)

)
= E (atx∗t u∗t ) = 0, (3)

which puts zero weight on time period t whenever at least one element of w∗t is not observed.2 We

maintain assumption (3) throughout the paper so that we can focus on the impact of missing data on

HAR inference in settings where β is identified by the observed data.

We consider two regression models, the AM and ES regression models, which are naturally related to

(3). The AM regression model, proposed by Parzen (1963),3 is given by

yt = x′tβ + ut, (t = 1, 2, . . . , T) , (4)

where yt = aty∗t , xt = atx∗t , and ut = atu∗t . The ordinary least squares (OLS) moment condition,

E(xt(yt − x′tβ)) = 0, is easily seen to be the same as (3) using the fact that a2
t = at. Practically speaking,

zeros are plugged in for y∗t and x∗t for any time period that has a missing observation in y∗t and/or any

element of x∗t . Because the zeros act as place holders for missing observations, the true time distances

between observations are preserved. At a conceptual level this would appear important when using

HAR variance estimators to obtain robust standard errors.

The ES regression model is obtained by ignoring time periods with missing data and re-indexing the

2As pointed out by the referees, applying the missing process to the moment condition rather than the regression model
itself allows xt to contain lags of yt. However, we do not explicitly consider dynamic models in this paper because either
dynamic completeness holds in which case the HAR variance estimator would not be required or dynamic completeness fails
in which case (3) does not hold and β is not identified.

3Parzen (1963) adopted the label, amplitude modulated series, because the original time series are amplitude modulated
by the missing process {at}.
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observed time periods.4 The observed time series processes for the ES regression model are {yES
τ =

y∗t , xES
τ = x∗t ; τ = ∑t

s=1 as}TES
τ=1, where TES = ∑T

t=1 at is the number of time periods with no missing data

(see Figure 1 below). This leads to the ES regression model

yES
τ = xES′

τ β + uES
τ , (τ = 1, 2, . . . , TES) . (5)

Similar to the AM regression model, the OLS moment condition for (5) is equivalent to (3) with the

missing time periods ignored and observed time periods reindexed. Because the ES approach changes

the time index, time distances between observations become skewed for many pairs of time periods

when computing an HAR variance estimator. For example, in Figure 1, wES
5 and wES

6 , which are 5 time

periods apart, are treated as if they are a single time period away.

data←−−−−−−−−−−−→v v v v v f f f f v v v f
wES

1

missing←−−−−−−−−→

wES
5

data←−−−−→

wES
6 = w∗10 6 = ∑10

t=1 at

. . .
data←−−−−−−−→f v v v v

wES
TES−3 wES

TES

Figure 1: Equal Space Regression Model

In fact, in terms of estimating β, there is no difference between the AM and ES regression models. Let

β̂ be obtained by the sample analog to (3):

1
T

T

∑
t=1

atx∗t (y
∗
t − x∗

′
t β̂) = 0.

Because ∑ atx∗t (y
∗
t − x∗

′
t β̂) = 0 can be equivalently written as

T

∑
t=1

atx∗t (y
∗
t − x∗

′
t β̂) =

T

∑
t=1

xt(yt − x′t β̂) =
TES

∑
τ=1

xES
τ (yES

τ − xES′
τ β̂) = 0,

it follows that β̂ is the OLS estimator in both the AM and ES regression models.5

4The label ‘equal space’ was adopted by Datta and Du (2012) because the observations in the ES regression are adjacent to
each other after reindexing time.

5The equivalence between the AM and ES approaches for parameter estimation could extend to models with more general
moment conditions that are exactly identified. However, in the case of over-identified models, this equivalence will not hold
in general. For example it will break down if the weighting matrix used for generalized method of moments (GMM) estimator
is based on a nonparametric kernel covariance matrix estimator because the reindexing of time in the ES approach would
make the covariance matrix estimators in the AM and ES approaches different. Using the fixed smoothing theory for GMM
developed by Sun (2014a), it should be possible to extend the results we obtain here to a more general GMM setting, but such
an extension is nontrivial and is beyond the current scope of this paper.
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2.2 Test Statistics

Our focus is inference regarding β based on the common OLS estimator for the AM and ES regression

models,

β̂ =

(
T

∑
t=1

xtx′t

)−1 T

∑
t=1

xtyt =

(
TES

∑
τ=1

xES
τ xES′

τ

)−1 TES

∑
τ=1

xES
τ yES

τ .

Inference is carried out using nonparametric kernel covariance matrix estimators. Consider testing the

null hypothesis, H0 : r (β) = 0, against the alternative, HA : r (β) 6= 0, where r (β) is a q× 1 vector (q ≤ k)

of continuously differentiable functions with a first derivative matrix R (β) = ∂r (β) /∂β′ of rank q.

The OLS residuals for the AM and ES regression models are given by ût = yt − x′t β̂ and ûES
τ =

yES
τ − xES′

τ β̂, respectively. The nonparametric kernel covariance matrix estimators for the AM and ES

regressions are given by

Ω̂ = Γ̂0 +
T−1

∑
j=1
K
(

j
M

)(
Γ̂j + Γ̂′j

)
=

1
T

T

∑
t=1

T

∑
s=1
K
(

t− s
M

)
v̂tv̂

′
s

and

Ω̂ES = Γ̂ES
0 +

TES−1

∑
j=1
K
(

j
MES

)(
Γ̂ES

j + Γ̂ES′
j

)
=

1
TES

TES

∑
τ=1

TES

∑
ν=1
K
(

τ − ν

MES

)
v̂ES

τ v̂ES′
ν ,

where Γ̂j = T−1 ∑T
t=j+1 v̂tv̂′t−j, 0 ≤ j ≤ T − 1, are the sample autocovariances of v̂t = xtût and Γ̂ES

j =

T−1
ES ∑TES

τ=j+1 v̂ES
τ v̂ES′

τ−j, 0 ≤ j ≤ TES − 1, are the sample autocovariances of v̂ES
τ = xES

τ ûES
τ . K(x) is a kernel

function. M and MES are the bandwidths. We denote the bandwidth of the ES regression model by MES

so as not to confuse with the bandwidth used in the AM case.

While the two variance estimators are different, Ω̂ES can be rewritten as a weighted sum of v̂tv̂′s in-

stead of v̂ES
τ v̂ES′

ν . First note that the elements of {v̂ES
τ v̂ES′

ν } comprise the non-zero subset of elements

of {v̂tv̂′s} with the remaining elements of {v̂tv̂′s} being zeros. Second, note that the distance between

the tth and sth observations in the AM regression model converts to |∑t
i=1 ai − ∑s

i=1 ai| in the ES regres-

sion model which is the number of observed data between time periods t and s. Therefore Ω̂ES can be

equivalently written as

Ω̂ES =
1

TES

T

∑
t=1

T

∑
s=1
K


t

∑
i=1

ai −
s
∑

i=1
ai

MES

 v̂tv̂′s. (6)
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Using the OLS estimator and the robust variance estimators, the HAR Wald statistics are defined as

WT = Tr
(

β̂
)′ [

R
(

β̂
)

Q̂−1Ω̂Q̂−1R
(

β̂
)′]−1

r
(

β̂
)

and (7)

WES
T = TESr

(
β̂
)′ [

R
(

β̂
)

Q̂−1
ES Ω̂ESQ̂−1

ES R
(

β̂
)′]−1

r
(

β̂
)

for the AM and ES regressions respectively, where Q̂ = T−1 ∑T
t=1 xtx′t and Q̂ES = T−1

ES ∑TES
τ=1 xES

τ xES′
τ . For

the single restriction (q = 1) case, the corresponding t-statistics are

tT =

√
Tr
(

β̂
)√

R
(

β̂
)

Q̂−1Ω̂Q̂−1R
(

β̂
)′ and tES

T =

√
TESr

(
β̂
)√

R
(

β̂
)

Q̂−1
ES Ω̂ESQ̂−1

ES R
(

β̂
)′ . (8)

To better compare WES
T with WT, rewrite WES

T using Q̂ES = (T/TES) Q̂ as

WES
T = Tr

(
β̂
)′ [

R
(

β̂
)

Q̂−1
(

TES

T
Ω̂ES

)
Q̂−1R

(
β̂
)′]−1

r
(

β̂
)

. (9)

It immediately follows that WES
T in (9) has the exact same form as WT in (7) with (TES/T) Ω̂ES used in place

of Ω̂. Furthermore, using (6), WES
T becomes

WES
T = Tr

(
β̂
)′ [

R
(

β̂
)

Q̂−1Ω̂K̃Q̂−1R
(

β̂
)′]−1

r
(

β̂
)

,

where Ω̂K̃ ≡
1
T

T

∑
t=1

T

∑
s=1
K


t

∑
i=1

ai −
s
∑

i=1
ai

MES

 v̂tv̂′s.

Hence, in terms of the test statistics, choosing between the AM approach and the ES approach boils

down to a choice of kernel function betweenK ((t− s)/M) and K̃(t, s, MES) ≡ K ((∑t
i=1 ai −∑s

i=1 ai)/MES) when

computing the HAR variance estimator. Suppose the same kernel and bandwidth are used for the AM

and ES approaches with M = MES. Then

∣∣∣∣ t
∑

i=1
ai −

s
∑

i=1
ai

∣∣∣∣
MES

≤ |t− s|
M

,

in which case it follows that less down-weighting on v̂tv̂′s is used in the ES approach because the ES

regression model ignores the gaps created by the missing observations. The bottom line is that, for a

given kernel and bandwidth, the ES Wald statistic has an equivalent AM Wald statistic where the HAR

variance estimator is based on a weighting scheme that is a transformed version of the ES weighting
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scheme.

3 ASSUMPTIONS AND ASYMPTOTIC THEORY

In this section, we derive the asymptotic behavior of the OLS estimator, the HAR variance estimators,

and the Wald statistics defined in Section 2. Our primary focus is on obtaining fixed-b asymptotic re-

sults. Throughout, the symbol “⇒” denotes weak convergence of a sequence of stochastic processes to

a limiting stochastic process andWq(r) denotes a q× 1 vector of independent standard Wiener process.

Following Sun (2014b) we make the following assumption on the kernel function.

AssumptionK. The kernel functionK(x) : R→ [0, 1] is symmetric, piecewise smooth withK(0) = 1 and∫ ∞
0 K(x)xdx < ∞.

AssumptionK imposes mild conditions on the kernel function and most of the kernel functions used

in practice - including Bartlett, Parzen, and QS kernels - satisfy this assumption. With Assumption K,

Kb(r, s) ≡ Kb(r− s) = K((r− s)/b) defined on [0, 1]× [0, 1] for every given b is symmetric and integrable

in L2([0, 1]× [0, 1]) and we can expand Kb(r, s) as Kb(r, s) = ∑∞
n=1 νn fn(r) fn(s). Here νn is an eigenvalue

of the kernel and fn(s) is the corresponding eigenfunction so that νn fn(s) =
∫ 1

0 Kb(r, s) fn(r)dr. See Sun

(2014b) for details.

3.1 Random Missing Process

In this section, we briefly discuss the random missing process case. We only sketch some results given

that our main interest is the non-random missing process case. Suppose {at} is a random process

such that (3) holds. A sufficient condition for (3) is that {at} is independent from the latent processes

{(u∗t , x∗′t )
′}. The weaker condition such as E(u∗t |at, x∗t ) = 0 with E(u∗t |x∗t ) = 0 is also sufficient.

When the missing process is random, the asymptotic theory is driven by the observed AM series.

Suppose the observed AM series satisfies the following for r ∈ [0, 1]: (a) T−1 ∑[rT]
t=1 xtx′t ⇒ rQ, uniformly

in r with Q full rank, and (b) T−1/2 ∑[rT]
t=1 vt ⇒ ΛWk (r) where Λ is the matrix square root of the long run

variance matrix of vt. Then the HAR variance estimator and Wald statistics of the AM series have the

usual fixed-b asymptotic limits as obtained by Kiefer and Vogelsang (2005). These conditions would be
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satisfied if the latent and missing processes are jointly weakly dependent with proper moment condi-

tions. A set of primitive conditions on missing and latent processes that are sufficient for these high

level assumptions are lengthy but standard. Interested readers can refer the Supplemental Appendix

available on our website.6

For the ES approach, suppose the ES regression model satisfies the following for r ∈ [0, 1]: (a) T−1
ES ∑[rTES]

τ=1 xτx′τ ⇒

rQES, uniformly in r with QES full rank, and (b) T−1/2
ES ∑[rTES]

τ=1 vES
τ ⇒ ΛESWk(r) where ΛES is the matrix

square root of the long run variance matrix of vES
τ . Then the HAR variance estimator and Wald test

statistics of the ES regression model have the usual fixed-b asymptotic limits as in Kiefer and Vogelsang

(2005). Because the ES processes have less dependence than the latent processes, it is reasonable to

conjecture that ES processes will satisfy conditions (a) and (b) above whenever the latent processes sat-

isfy conditions analogous to (a) and (b). This is trivially true when the latent processes are white noise

processes. In other words, if the latent processes satisfy conditions required for fixed-b theory then the

asymptotic fixed-b distribution for the ES approach would be identical to the usual fixed-b distribution.

Hence, from a fixed-b perspective, the random missing process case is rather trivial when the miss-

ing processes are weakly dependent and satisfy the key assumptions for obtaining a fixed-b limit. The

theory is more interesting when {at} is viewed as a non-random process.

3.2 Non-random Missing Process

In this section, we analyze the asymptotic behavior of the OLS estimator and the HAR test statistics de-

fined in Section 2 under the assumption that the missing process is non-random. The theory developed

in this section is used to obtain an asymptotic reference distribution for the HAR test statistics that de-

pends on the locations of the missing data in a given sample. We begin by describing the timing of the

missing observations for an arbitrary data set.

Definition 1. [Timing of the missing observations] We characterize an arbitrary data set with missing

observations as follows. From t = 1 to t = T1 we observe data, from t = T1 + 1 to t = T2 data are missing,

from t = T2 + 1 to t = T3 we observe data and so forth. Let the number of missing clusters be C. For

simplicity, we assume that data are observed at t = 1 and t = T.7 Thus, in general, from t = T2n−1 + 1 to

6http://msu.edu/∼ tjv/working.html
7This assumption is only for notational simplicity. The results of this paper go through without this assumption.
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t = T2n data are missing whereas from t = T2n + 1 to t = T2n+1 data are observed, n = 1, . . . , C (see Figure

2). For notational purposes, let T0 = 0 and T2C+1 = T.

data
←−−−−−−−−−−−→v v v v v f f f f v v v f

t = 1

missing
←−−−−−−−→

t = T1

data
←−−−−→

t = T2 t = T3

. . .
data

←−−−−−−−→f v v v v
t = T2C t = T

Figure 2: Timing of the data with missing observations

When the missing process is non-random, missing locations are non-random, and hence the finite

sample behavior of the estimators and statistics will depend on the locations of missing observations.

To capture this dependence on missing locations in the asymptotic theory, we map the missing and

observed cutoff dates into points on [0, 1] based on the proportion of time periods in the sample that

occur up to a particular cutoff date, Ti, by defining λi = Ti/T for i = 0, 1, . . . , 2C + 1. By definition,

T0 = 0 and T2C+1 = T and it follows that λ0 = 0 and λ2C+1 = 1.

Once a researcher obtains the data, the number of missing clusters and the locations of the missing

observations are known. Since these locations are defined within the obtained sample with time span

T, they are fully characterized by the set of ratios {λ1, . . . , λ2C} which we denote as {λi}. In order to

obtain useful asymptotic results that capture the locations of the cutoff dates, we treat {λi} and C fixed

as T → ∞, which is stated below.

Assumption fixed-λ. Let the missing and observed cutoff dates be {Ti} and C be the number of missing

clusters as defined in Definition 1. When the missing process is non-random, we let

λi ≡
Ti

T
, i = 0, 1, . . . , 2C + 1,

and C < ∞ be fixed as T → ∞.

Intuitively, we are preserving the relative finite sample locations of the missing clusters when obtain-

ing our asymptotic results. It is important to keep in mind that this asymptotic nesting is only used to

obtain reference distributions for generating critical values for test statistics and is not meant to be a de-

scription of the way the data is gathered or generated. Following the suggestion of a referee, we label this

asymptotic nesting the ‘fixed-λ device’.8 In some missing data settings, such as missing weekends for

8Conceptually, the fixed-λ device is the same as mapping a given number of break dates to corresponding breakpoints in a
model with structural change and obtaining asymptotic results holding the breakpoints fixed as T → ∞.

11



daily data, the assumption that C is fixed as T → ∞ may not match the way data is gathered. It is impor-

tant to keep in mind that what ultimately matters is the usefulness of the approximation delivered by a

particular asymptotic theory. A good example is continuous records asymptotics. In particular, contin-

uous record asymptotics uses an asymptotic nesting where the frequency of observation increases with

the span of the data held fixed. This nesting may not match the way data is gathered if the frequency

of observation cannot be increased and new data is only generated as the future evolves. Nonetheless,

continuous records asymptotics can deliver useful reference distributions in this situation as shown by

Phillips (1987, Section 5) and Perron (1991) in certain unit root settings where initial conditions matter

in finite samples. Continuous records asymptotics can capture the impact of initial conditions whereas

conventional asymptotics does not.

Suppose we allowed C → ∞ as T → ∞. For cases like missing weekends in daily data, by construction

the collection of {Ti} would be fixed as T → ∞ in which case λi → 0 for all i. While we have not worked

out the details in this case, we conjecture that the fixed-b limit of the test statistics would either be

degenerate or the same as the standard fixed-b limit. In either case, the asymptotics would not capture

the impact of missing data on the finite sample distribution of the test statistic. Alternatively, one could

allow C → ∞ but retain the assumption that Ti/T → λi as T → ∞. Because the proportion of missing

data must be in the range (0, 1), the sequence {λi}∞
i=1 would need to converge to zero. This would

imply that missing data becomes less frequent as T grows. That alone would not be a problem, per se,

if the resulting limits for the test statistics deliver a useful reference distribution. However, the limits

would depend on the infinite sequence {λi}∞
i=1 which would be unknown making the simulation of

asymptotic critical values infeasible. In contrast, by treating C fixed in the asymptotics, we obtain a

limit that depends on the observed finite number of missing dates that can easily be simulated.

Under the fixed-λ device, the asymptotic theory is driven by the latent process, and what matters is

whether the latent process satisfies conditions required for fixed-b asymptotic theory. For this purpose

the following high-level assumptions on the latent process are sufficient where we define v∗t = x∗t u∗t .

Assumption LP.

1. T−1
[rT]
∑

t=1
x∗t x∗

′
t ⇒ rQ∗, uniformly in r ∈ [0, 1], where Q∗ = E(x∗t x∗′t ) is full rank.

2. T−1/2
[rT]
∑

t=1
v∗t ⇒ Λ∗Wk (r) , ∀r ∈ [0, 1] , where Λ∗Λ∗′ = Ω∗ = Γ∗0 + ∑∞

j=1(Γ
∗
j + Γ∗′j ), Γ∗j = E(v∗t v∗′t−j).
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Assumption LP.1 states that a uniform (in r) law of large numbers (LLN) holds for {x∗t x∗′t }. Assumption

LP.2 states that a functional central limit theorem (FCLT) holds for the scaled partial sums of {v∗t }. (See

Kiefer and Vogelsang (2005) for details. For primitive conditions that are sufficient for Assumption LP,

see e.g., Gonçalves and Vogelsang (2011).)

Our theoretical results for the non-random missing process case are given below. Because the fixed-

b asymptotic distributions depend on the kernels used to compute the HAR variance estimators, the

random matrix that appears in the asymptotic results needs to be defined.

Definition 2. Let the h× h random matrix, PK (b, Bh), be defined as

PK (b, Bh) ≡
∫ 1

0

∫ 1

0
K
(

r− s
b

)
dBh (r) dBh (s)

′ .

We first state our results for the AM regression model followed by the ES regression model. The proof

of Theorem 1 is provided in Appendix A. We use the following notation. Let φ(s) = ∑C
n=0 1{λ2n < s ≤

λ2n+1} and r∧ s = min(r, s). Also λ denotes the proportion of the time periods in the sample where data

are observed, i.e., λ =
∫ 1

0 φ(s)ds = 1/T ∑T
t=1 at.

Theorem 1. [Results for the AM series]

Let B̆k (r, {λi}) ≡
∫ r

0 dB̆k(s, {λi}), r ∈ [0, 1], where dB̆k(s, {λi}) = φ(s)(dWk(s)− dsλ−1W k) and W k ≡∫ 1
0 φ(s)dWk(s). Under AssumptionsK, fixed-λ, and LP, the following hold as T → ∞.

(a) [Asymptotic Behavior of OLS ]

√
T
(

β̂− β
)
⇒ (λQ∗)−1 Λ∗W k = N

(
0, λ−1Q∗−1Ω∗Q∗−1

)

(b) [Fixed-b asymptotic limit of the HAR variance estimator ] Assume M = bT where b ∈ (0, 1] is fixed.

Then,

Ω̂⇒ Λ∗PK
(
b, B̆k ({λi})

)
Λ∗′,

where PK(·) is given by Definition 2.

(c) [Fixed-b asymptotic distribution of WT ] Under H0 and M = bT where b ∈ (0, 1] is fixed,

WT ⇒W
′
q
[
PK
(
b, B̆q ({λi})

)]−1W q,
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and when q = 1,

tT ⇒
W1√

PK
(
b, B̆1({λi})

) .

According to Theorem 1(a) the asymptotic variance of the OLS estimator depends on Ω∗, the long run

variance of the latent process, even though WT is constructed using the AM series long run variance

estimator Ω̂. This poses no problems for inference because the fixed-b limit of Ω̂ is proportional to Ω∗

through Λ∗ and Λ∗′ and Ω∗ cancels from the limiting distributions of the test statistics. Theorem 1(b)

shows that the fixed-b limit of Ω̂ depends on PK (·) which takes the same form as in the usual fixed-b

limits in models with no missing data (Kiefer and Vogelsang (2005)). This is not surprising since test

statistics based on the AM series preserve the true time distances between observations and the kernel

weights stay the same even if there are missing observations. The key difference between the fixed-b

limit of Ω̂ in Theorem 1(b) compared to that without missing observations is the form of B̆k(r, {λi}), the

asymptotic limit of the partial sum T−1/2 ∑[rT]
t=1 v̂t. When there are missing observations, B̆k (r, {λi}) de-

pends on the locations of the missing observations via the fixed-λ device and is not a Brownian bridge.9

Hence the critical values generated by the reference distributions given by Theorem 1(c) depend on the

locations of the missing data and are different from the standard fixed-b critical values.10

Next, we state our result for the ES regression model. The proof for Theorem 2 is given in Appendix B.

Theorem 2. [Results for the ES regression model]

Define the k × 1 stochastic process
...
W k(r) = λ−1/2

∫ (rλ+∑2n
k=1(−1)kλk)

0 φ(u)dWk(u) for n ∈ {0, . . . , C} such

that rλ + ∑2n
k=1(−1)kλk ∈ (λ2n, λ2n+1] and let

.̃..
W k(r) =

...
W k(r)− r

...
W k(1), r ∈ [0, 1]. Under Assumptions

K, fixed-λ, and LP, the following hold as T → ∞.

(a) [Asymptotic Behavior of OLS ]

√
TES

(
β̂− β

)
⇒ Q∗−1Λ∗

...
W k(1) = N

(
0, Q∗−1Ω∗Q∗−1

)
9This is shown formally in Appendix A.

10Similar to Kiefer and Vogelsang (2005), B̆k (r, {λi}) is independent ofW k. See Appendix A.
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(b) [Fixed-b asymptotic limit of Ω̂ES ] Let MES = bTES where b ∈ (0, 1] is fixed. Then,

Ω̂ES ⇒ Λ∗PK
(

b,
.̃..
W k

)
Λ∗′,

where PK(·) is defined via Definition 2.

(c) [Fixed-b asymptotic distribution of WES
T ] Let MES = bTES where b ∈ (0, 1] is fixed. Under H0,

WES
T ⇒

...
W q(1)′

[
PK
(

b,
.̃..
W q

)]−1 ...
W q(1),

and when q = 1,

tES
T ⇒

...
W1(1)√

PK
(

b,
.̃..
W1

) .

The asymptotic result for the OLS estimator given by Theorem 2(a) is identical to the result in The-

orem 1(a) because the AM and ES regression models have the same OLS estimator. Here λ−1 is gone

because the normalizing factor is
√

TES instead of
√

T. What is not obvious is that the asymptotic distri-

butions in Theorem 2(b) and (c) are in fact equivalent to the standard fixed-b asymptotic distributions

as in Kiefer and Vogelsang (2005) with b = MES/TES. Thus, we obtain the surprising result that when the

missing process is non-random, the HAR Wald test of the ES regression model has the usual fixed-b limit

that does not depend on the missing locations. This result holds because it can be shown that
...
W k(r) is

a vector of standard Wiener process (see Appendix B).

We can provide some intuition as to why the HAR statistics have the usual fixed-b limits in the ES

regression even though the ES approach contaminates the timing of the dates where data is observed.

Suppose the latent processes are i.i.d.. When the missing dates are ignored and dropped, we are left

with a regression model with TES observations and no serial correlation in the data. Therefore, WES
T , the

usual HAR Wald statistic computed with TES observations, has the usual fixed-b limit as in Kiefer and

Vogelsang (2005) with b = MES/TES. Because fixed-b limits of HAR statistics naturally extend from the

i.i.d. case to cases with dependence due to the proportionality of the numerator and denominator to

the long run variance, the results obtained in Theorem 2(b) and (c) are less surprising given that they

trivially hold in the i.i.d. case.
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4 BOOTSTRAP CRITICAL VALUES

In Section 3, we showed that when the missing process is non-random and the AM regression is used,

the HAR Wald statistic has a fixed-b asymptotic distribution that depends on the missing locations

through {λi} (‘λ,fixed-b’ distribution henceforth). We also showed that when the ES regression model

is used, the HAR Wald test statistic has the usual fixed-b asymptotic distribution. Both the usual fixed-b

and ‘λ,fixed-b’ distributions are non-standard but it is relatively straightforward to obtain the critical

values by directly simulating from the asymptotic distributions because they are functions of Brown-

ian motions.11 A potentially more user-friendly method, especially for the ‘λ,fixed-b’ distribution, is to

obtain critical values using the bootstrap.

In the fixed-b literature, Gonçalves and Vogelsang (2011) showed that the naive moving block boot-

strap has the same limiting distribution as the fixed-b asymptotic distribution under suitable regularity

conditions. Their result hinges on the idea that if the bootstrap samples satisfy the LLN and FCLT that

are required for fixed-b theory to go through with the probability measure induced by the bootstrap

resampling conditional on a realization of the original time series (denoted as p• henceforth), then be-

cause the fixed-b asymptotic distribution depends on the kernel function and b = M/T but is otherwise

pivotal, the bootstrap statistic will have the same limiting distribution as the original test statistic. The

regularity conditions are those such that bootstrap samples satisfy the LLN and FCLT in the bootstrap

world.

When observations are missing, the fixed-b asymptotic distribution of the HAR Wald statistics de-

pends on the kernel function and b. For the case of the ‘λ,fixed-b’ distribution, it also depends on {λi}.

However, the asymptotic distribution is otherwise pivotal. Hence it is expected that similar results as in

Gonçalves and Vogelsang (2011) would go through if the bootstrap samples for the AM series and the ES

regression models satisfy Assumptions fixed-λ and LP under the probability measure p•. Assumption

fixed-λ treats the locations of missing data as fixed within the sample, so we need a bootstrap resam-

pling scheme that preserves the missing locations. This means that the moving block bootstrap with

block length greater than one is not practical because blocks will shuffle the locations of the missing

data upon resampling. Instead, the i.i.d. bootstrap is appropriate where bootstrap samples are created

11For the usual fixed-b distribution, Vogelsang (2012) has developed a numerical method for the easy computation of stan-
dard fixed-b critical values and p-values for any significance level when the Bartlett kernel is used. Kiefer and Vogelsang (2005)
provide critical value functions for popular significance levels for a set of kernels.
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by first resampling with replacement from the observed data and creating a bootstrap sample with the

same missing locations as the original data.

Define ωt = (yt, x′t)
′, t = 1, . . . , T, that collects the dependent and independent variables of the AM

series. Among those T observations define the subset of only the observed data, which we denote ω̃t =

(ỹt, x̃′t)
′, t = 1, . . . , T̃, T̃ = ∑T

t=1 at. Using block length l = 1, resample T̃ observations with replacement

from ω̃t and obtain a bootstrap sample for the ES regression model, which we denote as ω̃•t = (ỹ•t , x̃•
′

t )
′,

t = 1, . . . , T̃. Using ω̃•t , construct the bootstrap sample for the AM series denoted as ω•t = (y•t , x•′t )
′,

t = 1, . . . , T, by filling in the observed locations with resampled data ω̃•t and the missing locations with

zeros. This way we construct an i.i.d. bootstrap sample with missing locations that match those in the

observed data. The naive bootstrap test statistic for the AM regression, W•T, is computed with ω•t as

W•T = T
(
r(β̂•)− r(β̂)

)′
[R(β̂•)Q̂•−1Ω̂•Q̂•−1R(β̂•)′]−1 (r(β̂•)− r(β̂)

)
, (10)

and the naive bootstrap test statistic for the ES regression model, WES•
T , is computed with ω̃•t as

WES•
T = T̃

(
r(β̂•)− r(β̂)

)′
[R(β̂•)Q̂•−1

ES Ω̂•ESQ̂•−1
ES R(β̂•)′]−1 (r(β̂•)− r(β̂)

)
, (11)

where β̂• is the OLS estimator from the regression of y•t on x•t , Q̂• = 1/T ∑T
t=1 x•t x•′t , Q̂•ES = 1/T̃ ∑T̃

τ=1 x̃•τ x̃•′τ ,

Ω̂• = 1/T ∑T
t=1 ∑T

t=1K ((t− s)/M) v̂•t v̂•′s where v̂•t = x•t (y
•
t − x•′t β̂•), and Ω̂•ES = 1/T̃ ∑T̃

τ=1 ∑T̃
ν=1K((τ − ν)/MES)̂̃v•τ̂̃v•′ν

where ̂̃v•τ = x̃•τ(ỹ•τ − x̃•′τ β̂•). Note that bootstrap statistics use the same formula as WT and WES
T , which is

why this approach is called the naive bootstrap.

Because we resample from observed time periods only, this resampling can be thought of as resam-

pling from the latent process ω∗t ≡ (y∗t , x∗′t )
′. We do not know the value of ω∗t when at = 0 and thus

we are resampling from T̃ observations not the full number of time periods T. However, because the

resampling is based on i.i.d. draws, this bootstrap sample has essentially the same properties as an i.i.d.

bootstrap sample of the fully observed latent process. We could take another T − T̃ independent draws

from ω̃t and fill in the missing locations of ω̃•t . Call this “filled-in” bootstrap sample ω∗•t . Then by con-

struction ω•t = atω
∗•
t where ω∗•t can be viewed as a bootstrap sample from the latent process given the
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i.i.d. resampling. If the bootstrap sample, ω∗•t , satisfies

(a) T−1
[rT]

∑
t=1

x∗•t x∗•′t
p•⇒ rQ∗• and

(b) T−1/2
[rT]

∑
t=1

v∗•t
p•⇒ Λ∗•Wk(r) (12)

for some Q∗• and Λ∗•, Assumption LP is satisfied for the bootstrap samples with the probability measure

p•. This implies that WES•
T has the usual fixed-b asymptotic distribution with the probability measure

p• according to Theorem 2 (c), and by Theorem 1 (c),

W•T
p•⇒W•′q PK(b, B̆q({λ•i }))W

•
q ,

withW•q =
∫ 1

0 ∑C•
n=0 1

{
λ•2n < s ≤ λ•2n+1

}
dWq(s) where {λ•m}2C•+1

m=0 are the missing locations in the boot-

strap sample and C• is the number of missing clusters in the bootstrap sample. Because the missing

locations of the bootstrap samples are configured to be identical to the missing locations of the data, it

follows that λ•j = λj and C• = C. Therefore,

W•T
p•⇒W ′qPK(b, B̆q({λi}))W q,

which is the same ‘λ,fixed-b’ limit as in Theorem 1(c).

These asymptotic equivalences are mainly due to the fact that the limiting distributions in Theorems

1(c) and 2(c) are pivotal with respect to Λ∗ and Q∗ so that W•T and WES•
T have asymptotic distributions

equivalent to those of WT and WES
T respectively even though Λ∗• and Q∗• are potentially different from

Λ∗ and Q∗. Hence conditions (a) and (b) in (12) are crucial for the asymptotic equivalence of the naive

i.i.d. bootstrap and fixed-b asymptotic distribution for both the AM series and the ES regression mod-

els. For primitive conditions that are sufficient for conditions (a) and (b) in (12), see Gonçalves and

Vogelsang (2011). Here the results of Gonçalves and Vogelsang (2011) directly apply as long as the block

length is one because these assumptions are made about the latent process which has nothing to do

with the missing process. We do not restate the conditions here.12

12Gonçalves and Vogelsang (2011) showed that the naive moving block bootstrap has the same limiting distribution as the
fixed-b asymptotic distribution under regularity conditions which include that the block length l = o(

√
T). Therefore, the

results of Gonçalves and Vogelsang (2011) indicate that the conditions (a) and (b) in (12) are satisfied with i.i.d. bootstrap
method.
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Finally, we briefly consider the bootstrap critical values for the random missing process case. When

the missing process is random, the HAR Wald statistics for both the AM series and ES regression models

have the usual fixed-b asymptotic distribution as sketched in Section 3.1. If (12) is satisfied for the ES

regression model, and (a) T−1 ∑[rT]
t=1 x•t x•′t

p•⇒ rQ• and (b) T−1/2 ∑[rT]
t=1 v•t

p•⇒ Λ•Wk(r) are satisfied for the

AM regression model, then the moving block bootstrap would have the same limiting distribution as

the usual fixed-b distribution. Hence the bootstrap critical values can be obtained by computing the

bootstrap test statistics as in (10) and (11) with resamples from the observed AM series and ES regres-

sion models respectively. This in fact is identical to how one would normally proceed either with the

AM regression model or the ES regression model as if no observations are missing. Because the missing

locations are not treated as fixed for the random missing process case, the locations of missing observa-

tions need not be preserved for the AM series bootstrap samples and also the block length need not be

one for both the AM series and ES regression models. The primitive conditions are lengthy but standard.

Interested readers can refer to the Supplemental Appendix which is available on our website.

5 FINITE SAMPLE PERFORMANCE

In this section we use Monte Carlo simulations to evaluate the finite sample performance of the asymp-

totic approximations of the HAR Wald tests for the AM series and ES regression models. Our main focus

is on the non-random missing process case, but we also provide some results for the random missing

process cases.

5.1 Data Generating Process (DGP)

We consider a simple linear regression model for the latent processes given by,

y∗t = α + βx∗t + u∗t ,

x∗t = ρx∗t−1 +
√

1− ρ2εx∗
t ,

u∗t = ρu∗t−1 +
√

1− ρ2εu∗
t ,

εx∗
t ∼ i.i.d.N (0, 1) , εu∗

t ∼ i.i.d.N (0, 1) ,

{εx∗
t } independent of {εu∗

t },

u∗1 = 0, x∗1 = 0,
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with t = 1, 2, ..., T so that T is the time span. We set α = β = 0 and ρ ∈ {0, 0.3, 0.6, 0.9}. For the random

missing process case, we model {at} as a Bernoulli(p) process, i.e. P(at = 1) = p, with p ∈ {0.3, 0.7}.

Hence Bernoulli(0.7) implies that 30% of the data are missing. We provide results for the time spans

T ∈ {50, 100}. For the non-random missing process case, we consider cases where data are missing in

two clusters (C = 2) configured to match the durations of World War I (from 1914 to 1918) and World

War II (from 1939 to 1945). We generate data both yearly and quarterly where the time span in years

is from 1911 to 1946. For yearly data, this means that 12 observations are missing out of T = 36 time

periods. For quarterly data, 48 observations are missing out of T = 144 time periods. Therefore, the

missing process is configured as a[rT] = 0 when r ∈ (λ1, λ2] ∪ (λ3, λ4] and a[rT] = 1 otherwise, with

λ1 = 1/12, λ2 = 2/9, λ3 = 7/9, and λ4 = 35/36 for both yearly and quarterly data. See Figure 3 for the

yearly data case. For practical comparisons between quarterly and yearly data, we generate yearly data

by first generating quarterly data and taking every fourth observation. Hence, using ρ at the quarterly

frequency implies that the correlation between yearly observations is ρ4.

v v v f f f f f v v
. . .

1911

T1 =3

1914 1918

T2 =8

Missing
←−−−−−−−−−→

1919 v1938

T3 =28

f1939

Missing
←−−−−−−−−−−−−−−−−→f f f f f f1945

T4 =35

v1946

Figure 3: Missing due to World War I and World War II : Yearly data

With the latent and the missing processes generated above we construct the AM regression model

yt = aty∗t = αat + βxt + ut, xt = atx∗t , ut = atu∗t (t = 1, . . . , T),

and the ES regression model

yES
τ = α + βxES

τ + uES
τ (τ = 1, . . . , TES), TES =

T

∑
t=1

at.

5.2 Test Statistics and Critical Values

We consider testing the null hypothesis, β = 0, against the alternative, β 6= 0. Let yES = ∑TES
τ=1 yES

τ /TES

and xES = ∑TES
τ=1 xES

τ /TES. Define ÿt = yt − yESat, ẍt = xt − xESat, ÿES
τ = yES

τ − yES, and ẍES
τ = xES

τ − xES.
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Following (8) in Section 2, the HAR t-statistics for β are

tT =
β̂√

T
(

∑T
t=1 ẍ2

t

)−2
Ω̂

and tES
T =

β̂√
TES

(
∑TES

τ=1 ẍES
τ

2
)−2

Ω̂ES

,

where

β̂ =

(
T

∑
t=1

ẍ2
t

)−1 T

∑
t=1

ẍtyt =

(
TES

∑
τ=1

ẍES
τ

2
)−1 TES

∑
τ=1

ẍES
τ yES

τ ,

Ω̂ =
1
T

T

∑
i=1

T

∑
j=1
K
(
|i− j|

M

)
v̂iv̂j, v̂t = ẍt

(
ÿt − β̂ẍt

)
, and

Ω̂ES =
1

TES

TES

∑
i=1

TES

∑
j=1
K
(
|i− j|
MES

)
v̂ES

i v̂ES
j , v̂ES

τ = ẍES
τ (ÿES

τ − β̂ẍES
τ ).

For the World War missing case, we use bandwidth sample size ratios b ∈ {1/12, 2/12, . . . , 11/12, 1} which

corresponds to bandwidths M ∈ {3, 6, 9, . . . , 36} and MES ∈ {2, 4, 6, . . . , 24} for the yearly data and

M ∈ {12, 24, 36, . . . , 144} and MES ∈ {8, 16, 24, . . . , 96} for the quarterly data. For the Bernoulli miss-

ing case, we use b ∈ {0.02, 0.1, 0.2, . . . , 0.9, 1} giving M ∈ {1, 5, 10, . . . , 45, 50} for T = 50 and M ∈

{2, 10, 20, . . . , 90, 100} for T = 100. For the ES regression model we use MES = [bTES]. Because TES

changes from one iteration to another, MES changes from one iteration to another given the same b. We

use the Bartlett and quadratic spectral (QS) kernels.

We provide results using simulated asymptotic critical values and bootstrap critical values. The labels

AM: fixed-b and ES:fixed-b denote the usual fixed-b asymptotic critical values whereas AM:λ,fixed-b

denotes asymptotic critical values based on the reference distribution given by Theorem 1. The AM

regression bootstrap critical values are labeled as AM: λ,bootstrap for the i.i.d. bootstrap that preserves

the locations of missing data and AM: bootstrap for the i.i.d. bootstrap that resamples from the AM series

that have zeros in the missing locations. For the ES regression, i.i.d. bootstrap critical values are labeled

ES: bootstrap. In all cases, 999 bootstrap resamples are used.

5.3 Finite Sample Results

Using 10, 000 replications, we compute empirical null rejection probabilities and power. The nominal

level is 0.05 in all cases. Here we mainly report results for the Bartlett kernel. The results for the QS

kernel are very similar and available on our website. We consider the non-random missing process case
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first. Figure 4 shows empirical rejection probabilities for the World War missing processes. When the

AM approach is used, the first thing to notice is that the AM:λ,fixed-b critical values give more accurate

inference than the AM: fixed-b critical values regardless of the serial correlation and the time span. Fig-

ure 4 shows that AM: λ,fixed-b rejection rates are always closer to 0.05 than AM: fixed-b rejection rates.

Similar patterns hold for the bootstrap critical values: AM: λ,bootstrap rejection rates are always closer

to 0.05 than AM: bootstrap rejection rates. These results are as expected given that the missing process

is non-random and both the AM:λ,fixed-b and AM: λ,bootstrap critical values capture the locations of

the missing observations.

These simulation results also suggest that the bootstrap is able to correct some of the size distortions

present when using the AM: λ,fixed-b asymptotic critical values. When T = 36, AM: λ,bootstrap rejec-

tion rates are closer to 0.05 than AM: λ,fixed-b rejection rates. Similarly, AM: bootstrap rejection rates are

closer to 0.05 than AM: fixed-b rejection rates. This improvement shrinks when the time span increases

to T = 144. There is an intuitive explanation for why the bootstrap is performing better than the asymp-

totic critical values when T is small. While the regressor and regression error are Gaussian, the product,

xtut, is not Gaussian and has a product normal distribution. It is the distribution of xtut that matters for

the accuracy of the FCLT when T is small. The product normal distribution has a density that is very

different from a Gaussian density and the bootstrap is picking this up to some extent. As T increases

and the FCLT becomes more accurate, we see smaller differences between the use of bootstrap critical

values and asymptotic critical values.

As suggested by Theorem 2, the ES regression approach works well when the missing process is non-

random.13 For example, consider the yearly data case (Figure 4, top two graphs). When ρ = 0.3, there

are only very mild over-rejection problems. When ρ = 0.9, the over-rejection problem becomes severe

but this over-rejection tendency when the data is highly correlated is something that is routinely found

even when no observations are missing. Given that the effective sample size is only 24 for the World War

missing process with T = 36, the ES regression model works surprisingly well. In fact the performance

of the ES regression model with the ES: bootstrap critical values is similar to the AM approach with the

AM: λ,bootstrap critical values, which has the least size distortion for the AM regression.

Because the ES regression approach with the ES: bootstrap critical values and the AM approach with

13For the ES regression model, the differences between ES:fixed-b rejection rates and ES: bootstrap rejection rates are small
in general. Hence only the ES: bootstrap rejection rates are reported.
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the AM: λ,bootstrap critical values work similarly well under the null, a researcher might consider choos-

ing between the two approaches based on power performance. We compared the power of these two

approaches (not size adjusted) for both the Bartlett and QS kernels by generating a latent process at the

quarterly frequency with ρ = 0.6. We found the general tendencies that, as b increases, power tends to

decrease and that the Bartlett kernel has better power than the QS kernel. However when comparing

the AM approach with the ES approach, there was little difference in power performance. Therefore,

the two approaches have similar performance in terms of both size and power.14

Next, we consider the random missing process case. Figure 5 shows empirical rejection probabilities

for the Bernoulli missing processes. In this case, the HAR t-statistics for both the AM and ES approaches

follow the usual fixed-b limit. Thus, AM: fixed-b, AM: bootstrap, and ES: bootstrap critical values are rel-

evant. Similar to the previous findings in the non-random missing process case, the bootstrap critical

values perform better than the asymptotic critical values. When T = 50 and p = 0.3 (Figure 5, top-left

graph), AM: bootstrap rejection rates are closer to 0.05 than AM: fixed-b rejection rates. The differences

between these two rejection rates are larger when ρ is higher. However, the ES regression model does

not work as well as in the non-random missing process case. When T = 50 and 70% of the observations

are missing, over rejection problems for the ES regression approach are severe. Thus, AM: bootstrap

rejection rates show the least size distortion in these DGPs. As the time span (T) increases or the pro-

portion of the missing observations shrinks, AM: fixed-b, AM: bootstrap, and ES: bootstrap rejection rates

converge.

Interestingly, simulation results for the random missing process case suggest that using bootstrap

critical values that treat the missing locations as fixed performs no worse than the bootstrap that cor-

rectly treats the missing locations as random. There exists negligible difference between AM: bootstrap

rejection rates and AM: λ,bootstrap rejection rates when T = 50 and 70% of the data are missing. These

differences go away if either the sample size increases or the proportion of missing observations de-

creases. Hence it appears that even if the missing process is random, there is little harm in using boot-

strap critical values that treat the missing locations as given. This finding can be explained using the

following thought experiment. Suppose we take the limiting distributions in 1(c) and ask what happens

to these fixed-λ limiting random variable as the number of missing clusters grows (C → ∞) and each

missing cluster shrinks (λ2n − λ2n−1 → 0) such that the proportion of observed data in any closed inter-

14Interested readers can refer the Supplemental Appendix available on our website, http://msu.edu/∼ tjv/working.html,
where we report the power performance for b = {0.17, 0.5, 0.75, 0.83}.
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val of [0, 1] remains a constant (as is the case for the Bernoulli missing process). In Appendix A we show

that the fixed-λ limiting random variable becomes the usual fixed-b distribution.

In summary, the simulation results suggest the AM approach with the AM: λ,bootstrap critical values

as a generally reliable approach for inference in regression models with missing data because (1) the

AM: λ,bootstrap critical values work particularly well whether the missing process is random or non-

random and (2) while the ES approach can work well for the non-random missing process case it still

does not dominate the AM approach either in terms of size distortions or power.

6 CONCLUSION

In this paper, we analyze the impact of missing observations on the HAR inference under the fixed-

b asymptotic framework. Our theoretical analysis and finite sample simulations suggest the following

advice for practitioners especially in situations where it is not clear whether it is more reasonable to view

the missing data as fixed and exogenous or as generated by a random missing process. First, the missing

observations for all variables should be replaced with zeros to preserve the timing of the observed data.

Second, fixed-b critical values that treat the locations of the missing observations as fixed and non-

random should be used for HAR robust tests. Third, the naive i.i.d. bootstrap with missing locations

matching those in the sample is a convenient way to validly generate these fixed-b critical values.
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Figure 4: Empirical null rejection probabilities: World War missing process case

Notes: This figure provides empirical null rejection probabilities across different bandwidth sample size ratios (b) for the World War missing process case
with nominal level 0.05. For the AM series, the rejection probabilities are computed based on the λ, fixed-b and the usual fixed-b distributions with and
without bootstrapping. For the ES regression model, the rejection probabilities are computed from the usual fixed-b distribution with bootstrapping.
Yearly data are generated taking every fourth observation of the quarterly data so ρ at the quarterly frequency implies that the correlation between yearly
observations is ρ4.
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Figure 5: Empirical null rejection probabilities: Bernoulli missing process case

Notes: This figure provides empirical null rejection probabilities across different bandwidth sample size ratios (b) for the Bernoulli (p) missing process
case with nominal level 0.05. For the AM series, the rejection probabilities are computed based on the λ, fixed-b distribution with bootstrapping and the
usual fixed-b distribution with and without bootstrapping. For the ES regression model, the rejection probabilities are computed from the usual fixed-b
distribution with bootstrapping.
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Appendix A: Proofs for AM Statistics with Non-Random Missing Process

This section contains proofs for Theorem 1. Notation in this section are defined in Sections 2 and 3. This section

is organized as follows. First two lemmas establish the limits of scaled partial sums of the AM series, T−1 ∑
[rT]
t=1 xtx′t

and T−1/2 ∑
[rT]
t=1 vt. These two lemmas then lead to the asymptotic result for the OLS estimator (Theorem 1 (a)).

Then we derive the limit of the partial sum, T−1/2Ŝ[rT] = T−1/2 ∑
[rT]
t=1 v̂t in Lemma A3 which allows us to obtain the

asymptotic limit of the HAR variance estimator of the AM series, Ω̂ (Theorem 1 (b)). Finally using Theorem 1 (a)
and 1 (b), we establish the limit of the HAR Wald test (Theorem 1 (c)).

Lemma A1. Under Assumptions fixed-λ and LP, for all r ∈ [0, 1],

1
T

[rT]

∑
t=1

xtx′t ⇒
∫ r

0
φ(s)dsQ∗.

Proof: Recall that data are observed at t = [rT] whenever r ∈ (λ2n, λ2n+1], n = 0, . . . , C (see Definition 1). Hence,
we can write

at =
C

∑
n=0

1 {λ2nT < t ≤ λ2n+1T} = φ

(
t
T

)
. (A.1)

Then,

1
T

[rT]

∑
t=1

xtx′t =
1
T

[rT]

∑
t=1

atx∗t x∗′t =
1
T

[rT]

∑
t=1

φ

(
t
T

)
x∗t x∗′t ⇒

∫ r

0
φ(s)dsQ∗

The weak convergence follows from Assumption LP.1.

Lemma A2. Under Assumptions fixed-λ and LP, for all r ∈ [0, 1],

T−1/2
[rT]

∑
t=1

vt ⇒ Λ∗
∫ r

0
φ(s)dWk(s).

Proof:

T−1/2
[rT]

∑
t=1

vt = T−1/2
[rT]

∑
t=1

atv∗t = T−1/2
[rT]

∑
t=1

φ

(
t
T

)
v∗t ⇒ Λ∗

∫ r

0
φ(s)dWk(s)

The second equality comes from (A.1) and the weak convergence immediately follows from Assumption LP.2.
Note that

∫ r
0 φ(s)dWk(s) is not a Wiener process because for r, s ∈ [0, 1],

E
(∫ r

0
φ(u)dWk(u)

∫ s

0
φ(v)dWk(v)′

)
=
∫ r∧s

0
φ(u)2duIk =

∫ r∧s

0
φ(u)duIk 6= (r ∧ s)Ik, (A.2)

which depends on {λi} through φ(u). Here, φ(u)2 = φ(u) since φ(u) is an indicator function.

Proof of Theorem 1(a): Using Lemmas A1 and A2, it follows that

√
T
(

β̂− β
)
=

(
1
T

T

∑
t=1

xtx′t

)−1

T−1/2
T

∑
t=1

vt ⇒ Q∗−1Λ∗
∫ 1

0 φ(s)dWk(s)∫ 1
0 φ(s)ds

≡ Q∗−1Λ∗
W k
λ

.
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Lemma A3. Let T−1/2Ŝ[rT] = T−1/2 ∑
[rT]
t=1 v̂t. Then, under Assumptions fixed-λ and LP, as T → ∞,

T−1/2Ŝ[rT] ⇒ Λ∗
∫ r

0
dB̆k(s, {λi}) ≡ Λ∗ B̆k(r, {λi}), r ∈ [0, 1],

where dB̆k (s, {λi}) = φ(s)

(
dWk(s)− ds

∫ 1
0 φ(s)dWk(s)∫ 1

0 φ(s)ds

)
, s ∈ [0, 1].

Proof: For r ∈ [0, 1], we can write

T−1/2
[rT]

∑
t=1

v̂t = T−1/2
[rT]

∑
t=1

vt −
1
T

[rT]

∑
t=1

xtx′t
√

T
(

β̂− β
)

⇒ Λ∗
∫ r

0

(
φ(s)dWk(s)− φ(s)ds

∫ 1
0 φ(u)dWk(u)∫ 1

0 φ(u)du

)

where the weak convergence is straightforward from Lemmas A1-A3.

Proof of Theorem 1(b): Define Kb(x) ≡ K
( x

b
)

and Kb(x, y) = Kb (x− y). With Assumption K, Kb(x, y) can be
represented as

Kb(x, y) =
∞

∑
j=1

νj f j(x) f j(y), (A.3)

where {νj} is a sequence of eigenvalues and { f j(t)} is an orthonormal sequence of eigenfunctions corresponding
to eigenvalues νj, because the series on the right side converges in L2([0, 1]× [0, 1]) to Kb(x, y). See Sun (2014b)
for details.

Using (A.3), we can write

Ω̂ =
1
T

T

∑
t=1

T

∑
τ=1

Kb

(
t
T

,
τ

T

)
v̂tv̂′τ

=
1
T

T

∑
t=1

T

∑
τ=1

∞

∑
j=1

νj f j

(
t
T

)
f j

( τ

T

)
v̂tv̂′τ

⇒ Λ∗
∫ 1

0

∫ 1

0

∞

∑
j=1

νj f j (r) f j (s) dB̆k(r, {λi})dB̆k(s, {λi})′Λ∗′

= Λ∗
∫ 1

0

∫ 1

0
Kb(r, s)dB̆k(r, {λi})dB̆k(s, {λi})′Λ∗′

= Λ∗PK
(
b, B̆k ({λi})

)
Λ∗′.

The weak convergence follows from Lemma A3.

Proof of Theorem 1(c): Applying the delta method and using Theorem 1(a), it is straightforward to show that

√
Tr(β̂)⇒ R (β0) (λQ∗)−1 Λ∗W k,

where R(β0) = ∂r(β)/∂β′|β=β0 . Note that the limit is q linear combinations of k independent Wiener processes.
Because Wiener processes are Gaussian, linear combinations of Wiener processes are also Gaussian. Thus, we can
rewrite the q linear combinations of k independent Wiener processes as q linear combinations of q independent
Wiener processes. Define the q× q matrix ∆∗ such that

∆∗∆∗′ = R (β0) (λQ∗)−1 Ω∗ (λQ∗)−1 R (β0)
′ .
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An equivalent representation for R (β0) (λQ∗)−1 Λ∗W k is given by

R (β0) (λQ∗)−1 Λ∗W k ≡ ∆∗W q. (A.4)

Similarly,

R (β0) (λQ∗)−1 Λ∗Wk(r) ≡ ∆∗Wq(r). (A.5)

We can write

WT =
√

Tr(β̂)′

R(β̂)

(
T−1

T

∑
t=1

xtx′t

)−1

Ω̂

(
T−1

T

∑
t=1

xtx′t

)−1

R(β̂)′

−1
√

Tr(β̂)

⇒
[

R(β0) (λQ∗)−1 Λ∗W k

]′
×
[

R (β0) (λQ∗)−1 Λ∗PK
(
b, B̆k ({λi})

)
Λ∗′ (λQ∗)−1 R (β0)

′
]−1 [

R(β0) (λQ∗)−1 Λ∗W k

]
=
(
∆∗W q

)′ [
∆∗PK

(
b, B̆q ({λi})

)
∆∗′
]−1 ∆∗W q

=W ′qPK
(
b, B̆q ({λi})

)−1W q.

The weak convergence follows from Lemma A1 and Theorem 1(a)- 1(b). The second equality follows from (A.4)
and (A.5). The third equality is straightforward because ∆∗ is invertible and cancels completing the proof. For the
single restriction case (q = 1), it follows that

tT ⇒
W1√

PK
(
b, B̆1 ({λi})

) .

Here, W k is independent of PK
(
b, B̆k ({λi})

)
because

E
[
W k B̆k (r, {λi})′

]
= E

[∫ 1

0
φ(u)dWk(u)

∫ r

0

(
φ(v)dWk(v)′ − φ(v)dv

∫ 1
0 φ(s)dWk(s)′∫ 1

0 φ(s)ds

)]

=
∫ r

0
φ(ν)dνIk −

∫ r

0
φ(ν)dν

∫ 1
0 φ(s)2dsIk∫ 1

0 φ(s)ds
= 0k×k

and both B̆k (r, {λi}) andW k are Gaussian.

Suppose we now take the limiting distributions in Theorem 1(c) and ask what happens to these fixed-λ limiting
random variables as the number of missing clusters grows (C → ∞) and each missing cluster shrinks (λ2n −
λ2n−1 → 0) such that the proportion of observed data in any closed interval of [0, 1] remains a constant η = ∑ at/T

(as is the case for the Bernoulli missing process). It follows that
∫ r∧s

0 φ(u)du→ (r ∧ s) η as C → ∞ and we have

E
(∫ r

0
φ(u)dWk(u)

∫ s

0
φ(v)dWk(v)′

)
=
∫ r∧s

0
φ(u)duIk → (r ∧ s) η Ik,

which in turn implies that
∫ r

0 φ(u)dWk(u)/
√

η is now a k× 1 standard Wiener process. Similarly,∫ r

0
φ(u)duQ∗ → rηQ∗ ∵ Lemma A1

as C → ∞. The dependence on η scales out of the test statistics and the standard fixed-b random variables are
obtained.
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Appendix B. Proofs for ES Statistic with Non-Random Missing Process

Appendix B contains proofs for Theorem 2. First two lemmas show that T−1/2
ES ∑

[rTES ]
t=1 xES

t uES
t ⇒ Λ∗

...
W k(r) where

...
W k(r) is a k× 1 standard Wiener process and T−1

ES ∑
[rTES ]
τ=1 xES

τ xES′
τ ⇒ rQ∗ when the missing process is non-random,

i.e.,{λi} are treated as fixed. Then by the usual fixed-b arguments as in Kiefer and Vogelsang (2005), Theorem 2
follows. Notation in this section are defined in Sections 2 and 3. Throughout this section we assume that MES =

bTES where b ∈ (0, 1] is fixed. We define the summation be zero whenever the starting value is larger than the final
value. For example, for a sequence {ak}, we have ∑0

k=1 ak = 0.

Lemma 1. Under Assumptions fixed-λ and LP, for r ∈ [0, 1],

T−1/2
ES

[rTES ]

∑
τ=1

xES
τ uES

τ ⇒ Λ∗
...
W k(r),

where
...
W k(r) = λ−1/2

∫ (rλ+∑2n
k=1(−1)kλk)

0 φ(u)dWk(u) is a standard k× 1 Wiener process.

Proof: Let τ = [rTES] be the time index for the ES regression model. Then there is a corresponding time index

t = [sT] for the AM series such that τ = [rTES] ≡ ∑
[sT]
i=1 ai. Because we are matching the ES regression model to

the AM series, t = [sT] should be a time period where the data is observed. By definition this implies that s ∈
(λ2n, λ2n+1], for some n = 0, . . . , C and it follows that ∑

[sT]
i=1 ai = [sT]−∑2n

k=1(−1)kλkT. Combining this expression

with [rTES] = ∑
[sT]
i=1 ai, we have [sT] = [rTES] + ∑2n

k=1(−1)kλkT = [rλT] + ∑2n
k=1(−1)kλkT. Hence for every r, there

exists s ∈ (λ2n, λ2n+1] such that

[sT] =

[(
rλ +

2n

∑
k=1

(−1)kλk

)
T

]
(A.1)

for some n = 0, . . . , C. Hence for r ∈ [0, 1], ∃s ∈ (λ2n, λ2n+1], such that

1√
TES

[rTES ]

∑
τ=1

vES
τ =

1√
λT

[sT]

∑
t=1

vt

⇒ λ−1/2Λ∗
∫ (rλ+

2n
∑

k=1
(−1)kλk

)
0

φ(u)dWk(u) ∵ Lemma A2 and (A.1)

≡ Λ∗
...
Wk(r).

Next, we show that
...
Wk(r) is a standard Wiener process. Suppose l ≤ r and m ≤ n. Then,

E
( ...
Wk(r)

...
Wk(l)′

)
= E

(
λ−1

∫ (rλ+∑2n
k=1(−1)kλk)

0
φ(u)dWk(u)

∫ (lλ+∑2m
k=1(−1)kλk)

0
φ(v)dWk(v)′

)

= λ−1
∫ (lλ+∑2m

k=1(−1)kλk)

0
φ(v)dvIk

= λ−1

((
lλ +

2m

∑
k=1

(−1)kλk

)
− λ2m + λ2m−1 − λ2m−2 + · · ·+ λ1

)
Ik = l Ik

The second equality follows from lλ + ∑2m
k=1(−1)kλk ≤ rλ + ∑2n

k=1(−1)kλk. By definition, lλ + ∑2m
k=1(−1)kλk ∈

(λ2m, λ2m+1] and the third equality follows immediately. By the same reasoning, when r < l, E
( ...
Wk(r)

...
Wk(l)′

)
=

rIk. Hence, for r, l ∈ [0, 1],

E
( ...
Wk(r)

...
Wk(l)′

)
= (r ∧ l) Ik.
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Since
...
Wk(u) is a zero-mean Gaussian process with cov

( ...
Wk(r),

...
Wk(u)

)
= (r ∧ u) Ik, it is a standard Wiener pro-

cess.

Alternatively,
...
Wk(u) being a standard Wiener process can be shown through the time-changed Brownian mo-

tion. Let α(t) =
∫ t

0 λ−1φ(u)2du and B(t) =
∫ t

0 λ−1/2φ(u)dWk(u). Then B(t) is a Gaussian process with indepen-
dent increments where var (B(t)−B(s)) = (α(t)− α(s)) Ik, t > s. HenceB(t) is a time-changed Brownian motion

with a time index α(t): B(t) d
=Wk (α(t)).

Note that

...
W k(r) = B

(
rλ +

2n

∑
k=1

(−1)kλk

)
d
=Wk

(
α

(
rλ +

2n

∑
k=1

(−1)kλk

))
.

In addition, since φ(s) is an indicator function, α(t) =
∫ t

0 λ−1φ(u)2du =
∫ t

0 λ−1φ(u)du. It follows that

α

((
rλ +

2n

∑
k=1

(−1)kλk

))
=
∫ (rλ+

2n
∑

k=1
(−1)kλk

)
0

λ−1φ(u)du = λ−1rλ = r.

Therefore,
...
W k(r) =Wk(r) and

...
W k(r) is a standard Brownian motion.

Lemma 2. Under Assumptions fixed-λ and LP, for r ∈ [0, 1],

1
TES

[rTES ]

∑
τ=1

xES
τ xES′

τ ⇒ rQ∗.

Proof: Recall from (A.1) that for each time index of the ES regression model τ = [rTES], there is a corresponding
time index t = [sT] of the AM series such that s ∈ (λ2n, λ2n+1] and s = rλ + ∑2n

k=1(−1)kλk. Hence we can write

1
TES

[rTES ]

∑
τ=1

xES
τ xES′

τ =
1

λT

[sT]

∑
t=1

xtx′t

⇒ λ−1
∫ s

0
φ(u)duQ∗ ∵ Lemma A1

= λ−1 (s− λ2n + λ2n−1 − . . . + λ1) Q∗ ∵ s ∈ (λ2n, λ2n+1]

= λ−1

((
rλ +

2n

∑
k=1

(−1)kλk

)
− λ2n + λ2n−1 − . . . + λ1

)
Q∗

= rQ∗.

Proof of Theorem 2(b) and (c): We proved that T−1/2
ES ∑

[rTES ]
τ=1 vES

τ ⇒ Λ∗
...
W k(r) where

...
W k(r) is a standard Wiener

process in Lemma 1 and T−1
ES ∑

[rTES ]
τ=1 xES

τ xES′
τ ⇒ rQ∗ in Lemma 2. Hence

T−1/2
ES

[rTES ]

∑
τ=1

v̂ES
τ = T−1/2

ES

[rTES ]

∑
τ=1

vES
τ −

1
TES

[rTES ]

∑
τ=1

xES
τ xES′

τ

√
TES

(
β̂− β

)
⇒ Λ∗

...
W k(r)− rQ∗Λ∗Q∗−1 ...

W k(1)

= Λ∗
( ...
W k(r)− r

...
W k(1)

)
≡ Λ∗

.̃..
W k(r),

where
.̃..
W k(r) is a Brownian bridge. Hence Theorem 2(b) and 2(c) follow from the usual fixed-b arguments (see

Kiefer and Vogelsang (2005)).
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